# **APPENDIX 2-A**

WWTP Analysis Procedure

## Appendix 2-A WWTP Analysis Procedure

## Step 1: Establish Limits

Limits were obtained from Jim George at work session number 2 and can be seen in Appendix 2-b

## Step 2: Calculate Current Loading Rates

• Shown in Appendix 2-I

o

- Based on Current Concentrations and Discharge
- Loads are in lbs/year and change from year to year
- Steps to establish loads are outlined power point presentation (Appendix 2-D)

• Use the equation 
$$Load = Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$$

- <sup>°</sup> Q is current flow, taken from the 2002 Water and Sewer Plan + Updated Information provided by the County, detailed in (Appendix 2-H)
  - C was obtained from a variety of sources which are detailed in (Appendix 2-E)
    - Concentrations for Chestertown, Rock Hall, Galena, Millington, Kennedyville were obtained from the Discharge Monitoring Reports (Appendix 2-F)
      - Note: DMR are only available through 4/2008 and may not reflect the recent upgrades at the Chestertown WWTP Plant
      - Tolchester Concentrations were obtained by the county in the form of lb/first 2 months and converted to mg/liter (Appendix 2-G)
      - Betterton and Worton do not need to monitor their effluent and were assumed to be discharging at 18mg/liter of Nitrogen and 3 mg/liter of Phosphorus

Step 3: Calculate Loading Under Current Conditions & ENR at Chestertown and Rock Hall

- Shown in Appendix 2-I
- Same as above, except assume a concentration of 4mg/liter of Nitrogen and 0.3 mg/liter of Phosphorus for the Chestertown and Rock Hall WWTPs

## Step 4: Calculate 2030 Loadings

- Shown in Appendix 2-K
- Based on Current Concentrations for minor plants and ENR Strategy concentrations for major plants and future flows
- Loads are in lbs/year and will change from year to year
- Steps to establish loads are outlined in attached power point presentation (Appendix 2-D)

• Use the equation 
$$Load = Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$$

- <sup>o</sup> Q is computed using a ratio of existing sewer service area to proposed sewer service area (calculations can be seen in Appendix 2-J).
- Concentration was the same as step 3

Step 5: Calculate 2030 Loading with Annexations

- Shown in Table Appendix 2-K
- Same as above but include annexation areas in 2030 Flow Calculation as seen in Appendix 2-J

## Step 6a: Determine Hydraulic Surplus or Deficit

- Shown in Table 2-3
- Compare Hydraulic Design Capacity to current and future Discharge
- Establish Surplus or Deficit by subtracting discharge from design capacity for each

## Step 6b: Determine Nutrient Surplus or Deficit

- Shown in Table 2-4 and 2-2
- Subtract the load from the limit
- The maximum Phosphorus limit, (427 lb/year), for expanded minor WWTP was used for Millington, Tolchester and Worton for the 2030 and 2030 plus annexation conditions (see power point presentation A-1 for more detail)
- Positive Number is a surplus and means more homes may be added to the system
- Negative Number is deficit and mean upgrades must be made to accommodate the flow

## Step 7: Conversion to Equivalent Dwelling Units

- Shown in Table 2-4, 2-5, and summary is shown in table 2-6
- Use the following formula to convert nutrient surplus or deficit to equivalent dwelling units (EDUs) assuming 220 gpd/EDU and the same effluent concentration used in the load calculation

| Additonal EDUs =  | <i>Limit – Load</i> ×1,000,000                    |
|-------------------|---------------------------------------------------|
| Additional EDUS – | $C \times 8.34 \times 365 \times 250^{1,000,000}$ |

• For Hydraulic Capacity simply divide surplus or deficit by 220 gpd/edu

## Step 8: Determine the limiting factor

- Shown in Table 2-6
- The limiting factor will either be the nutrient limit or the hydraulic capacity
- Determine the minimum EDU (Hydraulic, Nitrogen, and Phosphorus) for each treatment plant under each conditions and record
- This is your limiting factor for the treatment plant

# **APPENDIX 2-B**

Kent County Tributary Strategy Point Source Nutrient Caps

Kent County Tributary Strategy Point Source Nutrient Caps

| POINT SOURCE*                  | COUNTY | DESIGN<br>CAPACITY<br>(MGD) | SURFACE<br>DISCHARGE<br>(MONTHS)  | PROJECTE<br>D 2020<br>FLOW<br>(MGD) | 2000 FLOW<br>(MGD) | 2000 TN<br>(MG/L) | 2000 TP<br>(MG/L) | 2000 TNL<br>(LB/YR) | ENR<br>STRATEGY<br>TOTAL<br>NITROGEN<br>LOAD CAP<br>(LBS/YR) | 2000 TPL<br>(LBS/YR) | ENR<br>STRATEGY<br>TOTAL<br>PHOSPHOR<br>US LOAD<br>CAP<br>(LBS/YR) |
|--------------------------------|--------|-----------------------------|-----------------------------------|-------------------------------------|--------------------|-------------------|-------------------|---------------------|--------------------------------------------------------------|----------------------|--------------------------------------------------------------------|
| CHESTERTOWN                    | KENT   | 1.500                       | 1980 - Andreas Barrisson, Andreas | 0.687                               | 0.637              | 9.25              | 4.34              | 17,978              | 18,273                                                       | 8,437                | 1,371                                                              |
| ROCK HALL                      | KENT   | 0.505                       |                                   | 0.285                               | 0.264              | 14.81             | 0.51              | 11,933              | 6,152                                                        | 414                  | 461                                                                |
|                                | KENT   | 0.200                       |                                   | 0.022                               | 0.021              | 18.00             | 3.00              | 1,137               | 1,224                                                        | 189                  | 204                                                                |
| BETTERTON                      | KENT   | 0.060                       |                                   | 0.028                               | 0.026              | 26.26             | 4.51              | 2,084               | 1,538                                                        | 358                  | 256                                                                |
| GALENA                         | KENT   | 0.014                       |                                   | 0.006                               | 0.006              | 18.00             | 3.00              | 308                 | 332                                                          | 51                   | 55                                                                 |
| GREAT OAKS LANDING             | KENT   | 0.050                       |                                   | 0.026                               | 0.022              | 18.00             | 3.00              | 243                 | 1,399                                                        | 41                   | 233                                                                |
| KENNEDYVILLE                   | KENT   | 0.105                       |                                   | 0.061                               | 0.057              | 18.00             | 3.00              | 3,114               | 3,344                                                        | 519                  | 557                                                                |
| MILLINGTON                     | KENT   | 0.265                       |                                   | 0.102                               | 0.088              | 18.00             | 3.00              | 4,827               | 5,584                                                        | 805                  | 931                                                                |
| TOLCHESTER<br>WORTON-BUTLERTON | KENT   | 0.150                       |                                   | 0.066                               | 0.061              | 18.00             | 3.00              | 3,372               | 3,631                                                        | 562                  | 605                                                                |

1

a wave myst april a reprime to

· .

(1.1. Q.8

2ª and

All P. and the A. I. Strange & Inch.

# **APPENDIX 2-C**

Permit Cap vs. Tributary Strategy Cap Comparison

### Appendix 2-C: Permit Cap vs. Tributary Strategy (ENR) Cap Comparison

|                        | MDE-projected            | Permit No. |            | Permitted |       | Curre  | ent Flow             | MDE 2020  | Plant Design |
|------------------------|--------------------------|------------|------------|-----------|-------|--------|----------------------|-----------|--------------|
| WWTP                   | "2020" Flow <sup>1</sup> | NPDES      | State      | Flow      |       |        | 3 year avg ('05-'07) | exceeded? | Flow         |
|                        | MGD                      |            |            | MGD       | MGD   |        | MGD                  |           | MGD          |
| Chestertown            | 0.687                    | MD0020010  | 01-DP-0592 | 0.900     | 0.684 | (2007) | 0.706                | YES       | 1.500        |
| Rock Hall <sup>2</sup> | 0.285                    | MD0020303  | 00-DP-0575 | 0.485     | 0.220 | (2008) |                      | YES       | 0.510        |
| Galena                 | 0.028                    | MD0020605  | 01-DP-0528 | 0.060     | 0.050 | (2008) |                      | YES       | 0.080        |
| Betterton              | 0.022                    | MD0020575  | 01-DP-0591 |           | 0.012 | (2007) |                      | YES       | 0.200        |
| Millington             | 0.061                    | MD0020435  | 00-DP-0166 | 0.105     | 0.055 | (2007) | 0.055                | NO        | 0.145        |
| Kennedyville           | 0.026                    | MD0052671  | 06-DP-1142 | 0.060     | 0.023 | (2007) | 0.020                | NO        | 0.060        |
| Worton                 | 0.066                    | MD0060585  | 00-DP-2109 | 0.150     | 0.103 | (2007) | 0.0997               | YES       | 0.150        |
| Tolchester             | 0.102                    | MD0067202  | 06-DP-3105 | 0.265     | 0.092 | (2007) | 0.094                | NO        | 0.265        |

(1) Used to determine Tributary Strategy nutrient loading

(2) Rock Hall in process to reduce permitted flow from 0.505 MGD to 0.485 MGD

|                             | Total N      | litrogen       | Total Phosphorus |                | Pe               | rmit              |                            |
|-----------------------------|--------------|----------------|------------------|----------------|------------------|-------------------|----------------------------|
| WWTP                        | ENR Strategy | Current Permit | ENR Strategy     | Current Permit | Effective        | Expiration        |                            |
|                             | Load Cap     | Load Cap       | Load Cap         | Load Cap       | Date             | Date              |                            |
|                             | LBS/YR       | LBS/YR         | LBS/YR           | LBS/YR         |                  |                   |                            |
| Chestertown <sup>(1)</sup>  | 18,273       | 14,600         | 1,371            | 5,475          | July 1, 2003     | June 30, 2008     | (under renewal)            |
| "                           |              | 18,273         |                  | 1,371          | 2008             | 2013              | (draft permit in progress) |
| Rock Hall (2) (3)           | 6,152        | none ('03-'08) | 461              | 1,533          | November 1, 2003 | October 31, 2008  | (under renewal)            |
| Galena <sup>(4)</sup>       | 1,538        | 1,460          | 256              | 1,948          | January 1, 2004  | December 31, 2008 |                            |
| Betterton                   | 1,224        | none ('03-'07) | 204              | none ('03-'07) | January 1, 2003  | December 31, 2007 | (under renewal)            |
| Millington (5)              | 3,344        | none ('03-'08) | 557              | none ('03-'08) | April 1, 2003    | March 31, 2008    | (under renewal)            |
| Kennedyville <sup>(6)</sup> | 1,399        | 1,399          | 233              | 233            | July 1, 2006     | June 30, 2011     |                            |
| Worton                      | 3,631        | 3,631          | 605              | 457            | July 1, 2008     | June 30, 2013     |                            |
| Tolchester (7)              | 5,584        | 5,584          | 931              | 931            | April 1, 2008    | March 31, 2013    |                            |

(1) When the BNR installation has been completed, the permittee is to operate the BNR process on a year-round basis and undertake best efforts to meet the nitrogen cap goal of 14,600 lbs/year. When a nutrient load goal for this facility is allocated under the Chesapeake Bay 2000 Agreement, this permit may be reopened and new goals added as appropriate. The permit may also be reopened to be issued in accordance with the requirements of MDE's Watershed Permitting Plan under which all discharge permits in a watershed are issued the same year.

(2) When the average flow for a calendar year equals or exceeds 0.500 MGD, it is expected that the facility will be upgraded to include Biological Nitrogen Removal (BNR). After completion of BNR upgrade, the permittee shall make every effort to meet a total nitrogen goal of 8 mg/l on an annual basis by operating the BNR process at the facility on year round basis. The 8.0 mg/l yearly average is to be achieved through installation of a BNR facility designed to meet a seasonal (May through October) average of 8.0 mg/l.

(3) The permit may be reopened to incorporate future Total Maximum Daily Load requirements. The permit may also be reopened to incorporate nitrogen and phosphorus load allocations contained in the Upper Eastern Shore Tributary Strategy now being developed.

(4) 1,948 lbs/yr Phosphorus is the maximum annual load based on EPA approved TMDL. Nitrogen limit based on ammonia limit yearly average.

(5) Permit requires monitoring of Total Nitrogen and Total Phosphorus: once per month 8 hour composite, but states no limits.

(6) The permittee shall make every effort to meet total nitrogen and phosphorus yearly goals based on Enhanced Nutrient Strategy (ENR) loads.

(7) Minor Facility Permit Language: "Under the Point Source Element of Maryland's Tributary Strategy, the \_\_\_\_\_ WWTP has been assigned annual nutrient loads of \_\_\_\_\_ lbs/year total nitrogen (TN) and \_\_\_\_ lbs/year total phosphorus (TP). As long as the design flow of the WWTP does not increase, these loads will remain only goals, not limitations. The permittee, however, shall make an effort to optimize the operation of the existing WWTP to meet these goals. Under any future expansion, the WWTP will be given permit limits of \_\_\_\_\_ lbs/year TN and \_\_\_\_ lbs/year TP."

# **APPENDIX 2-D**

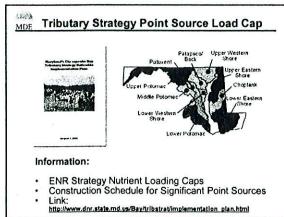
**MDE Point Source Cap Power Point** 

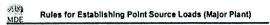
Appendix 2-D



#### ..... **Basic Load Calculation** MDE

Nutrient Load (lbs/year)= Q x C x 8.34 x 365


Q: Flow (Million Gallons per Day, MGD) C: Effluent Nutrient Concentration (mg/L) 8.34: Conversion Factor 365 days/year


Example: 0.3 MGD, 18 mg/L TN in effluent

Annual Load = 0.3 x 18 x 8.34 x 365 = 16,425 lbs/yr

NOTE: Some plants have seasonal limits.

12





Major Plants (Daily Flow greater than 0.5 MGD)

1. Existing or Planned Flow Capacity

1.

2. ENR treatment level: Annual average concentration (4.0 mg/L TN, 0.3 mg/L TP)

| MDE Estim   | ating Treat  | ment Concentr  | ation for Plant Expansion |
|-------------|--------------|----------------|---------------------------|
| Majors (C   | apacity g    | reater than (  | 0.5 MGD)                  |
| If Future E | xpansio      | n is Contemp   | plated                    |
| Nutrient Lo | ad Alloca    | tion remains   | the same*                 |
|             |              |                |                           |
| Load        | =            | Flow x         | Concentration             |
| fixed       |              | Ť              | +                         |
| * Unless an | offsel/trade | is considered. |                           |

#### -Tista Estimating Load Above Cap for a Plant Expansion MDE

Example: Expansion of Major WWTP

TN Allocation (Cap based on flow of 0.5 MGD):

0.5 MGD x 4 mg/L x 8.34 x 365 d/yr = 6,100 lbs/yr

Consider Expansion to 0.75 MGD (0.25 MGD Increase). Increased TN Load:

0.25 MGD x 4 mg/L x 8.34 x 365 d/yr = 3,050 lbs/yr

3,050 lbs/year needs to be offset in some way: • Spray Irrigation, • Trade, • Additional Treatmenl.

Example: Expansion of Major WWTP

TN Allocation (Cap based on flow of 0.5 MGD):

0.5 MGD x 4 mg/L x 8.34 x 365 d/yr = 6,100 lbs/yr

Consider Expansion to 0.75 MGD. Effluent TN Concentration Needed to Meet the TN Cap:

6.100 lbs/yr

0.75 MGD x 8.34 x 365 d/yr = 2.7 mg/L

Is this concentration technically feasible to achieve? If not, other options can be considered.

# MDE Rules for Establishing Point Source Loads (Minor Plants)

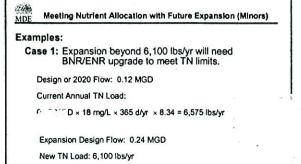
#### Minor Plants (Capacity less than 0.5 MGD)

Basis for Nutrient Load Cap:

- 1. 2020 projected flow or Design Capacity flow (whichever is lower)
- 2. Secondary level annual average concentration (18 mg/L TN, 3 mg/L TP)

# MDE Rules for Establishing Point Source Capacity (Minor)

### If Future Expansion of Minor Plant is Considered...


Case 1. Nutrient load allocations were <u>LARGER THAN</u> 6,100 Ibs/yr for TN or 457 Ibs/yr for TP

Load allocation will be "re-adjusted" DOWN to these values.

#### Case 2. Nutrient load allocations were <u>LESS THAN</u> 6,100 Ibs/yr for TN or 457 Ibs/yr for TP...

Load allocation will remained the same.

As a result of increased discharge flow, the new limits for effluent nutrient concentration will be more stringent.



6,100 lbs/yr + (365 d/yr × 8.34 × 0.24 MGD ) = 8.4 mg/L TN

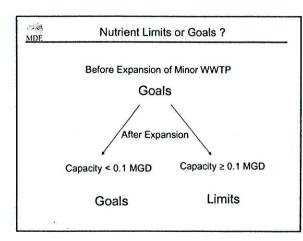
Rule-of-Thumb: 0.11 mgd is a planning threshold for TN.

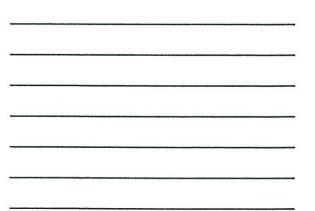
Moting Nutrient Allocation with Future Expansion (Minors)

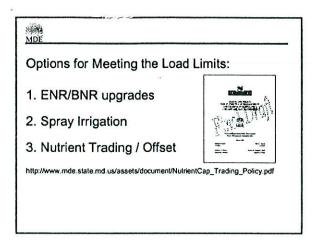
## Examples:

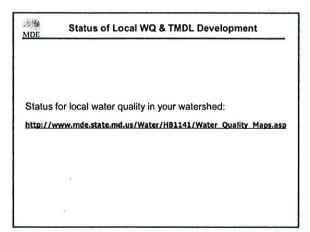
 Expansion beyond 0.05 MGD will need phosphorus control to meet TP limits.

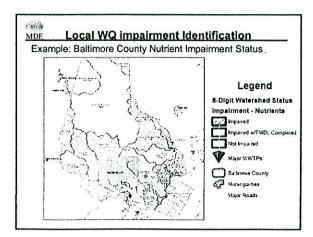
Design or 2020 Flow: 0.05 MGD

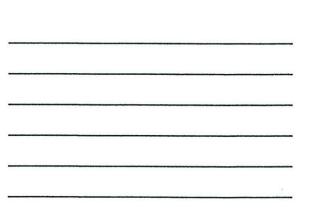

Current Annual TP Load:


0.05 MGD×3 mg/L×365 d/yr ×8.34 = 457 lbs/yr

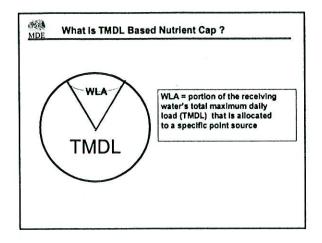

Expansion Design Flow: 0.1 MGD

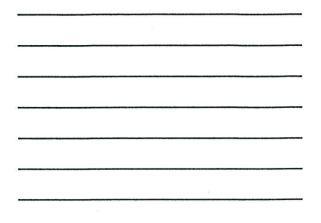

New Annual TP Load: 457 lbs/yr

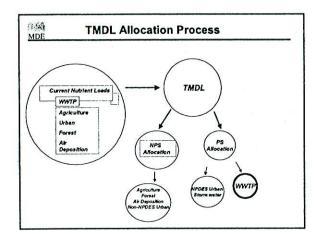

457 lbs/yr + (365 d/yr  $\times$  8.34  $\times$  0.1 MGD ) = 1.5 mg/L TP





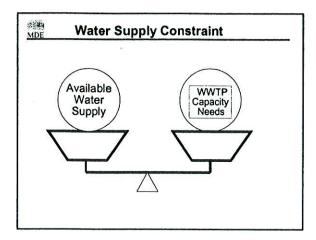


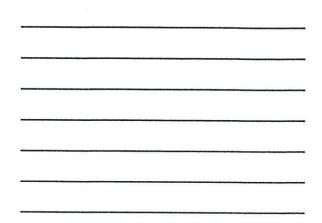

\*\*\*\*








# MDE TMDL Based Nutrient Cap


### When will TMDL become permit limits?

After a TMDL is approved by EPA, the WLA allocated for the WWTP will become limits at the next NPDES permit renewal

#### ENR limits vs. TMDL limits

NPDES permit will adapt the more stringent ones as the discharge limits





# **APPENDIX 2-E**

WWTP Input Summary

#### Appendix 2-E

#### Input Summary

#### **Concentration Input Summary**

|                              |                       | Nitrogen              |                           | Phosphorus            |                       |                            |  |
|------------------------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|----------------------------|--|
| Name of Plant                | Source of Information | Length of Information | Nitrogen Value (mg/liter) | Source of Information | Length of Information | Phoshorus Value (mg/liter) |  |
| Major Plants                 |                       |                       |                           |                       |                       |                            |  |
| Chestertown WWTP             | Assumed               |                       | 4                         | Assumed               |                       | 0.3                        |  |
| Minor Plants WWTP            |                       |                       |                           |                       |                       |                            |  |
| Rock Hall WWTP               | DMR                   | 1/2008-12/2008        | 7.32                      | DMR                   | 1/2008 - 12/2008      | 0.195                      |  |
| Galena WWTP                  | DMR                   | 1/2008 - 12/2008      | 11.48                     | DMR                   | 1/2008-12/208         | 6.95                       |  |
| Millington WWTP              | DMR                   | 1/2006-3/2008         | 18.96                     | DMR                   | 1/2006-3/2008         | 2.4                        |  |
| Worton WWTP                  | N/A                   | Assumed               | 18                        | N/A                   | Assumed               | 3                          |  |
| Tolchester WWTP <sup>1</sup> | Kent Co.              | 1/2008 - 5/2008       | 9.4                       | Kent Co.              | 1/2008 - 5/2008       | 2                          |  |
| Kennedyville WWTP            | DMR                   | 10/2006-3/2008        | 4.3                       | DMR                   | 10/2006-3/2008        | 1                          |  |
| Betterton WWTP               | N/A                   | Assumed               | 18                        | N/A                   | Assumed               | 3                          |  |

1 Tolchester Nutrient Information was given in total pounds, conversion to mg/l can be seen in Appendix 2-F.

2 Chestertown is assumed to be operating at ENR.

3 Worton and Butterton do not record Nitrogen and Phosphorus, concentrations were assumed based on Tributary Strategy.

#### Flow Input Summary

|                          | Current               | Flow    | Futu                         | ire Flow  |
|--------------------------|-----------------------|---------|------------------------------|-----------|
| Name of Plant            | Source of Information | Value   | Source of Information        | Value     |
| Major Plants             |                       |         |                              |           |
| Chestertown WWTP         | Chestertown Fax       | 706,000 | 1/14/09 Meeting <sup>1</sup> | 1,500,000 |
| Minor Plants WWTP        |                       |         |                              |           |
| Rock Hall WWTP           | 2008 DMRs             | 220,000 | Calculated                   | 228,273   |
| Galena WWTP              | 2008 DMRs             | 50,000  | Calculated                   | 50,000    |
| Millington WWTP          | Discharge Permit      | 140,000 | 1/14/209 Meeting             | 250,000   |
| Worton WWTP <sup>3</sup> | Flow Capacity Report  | 99,000  | Calculated                   | 250,000   |
| Tolchester WWTP          | 2008 Notes            | 94,000  | Calculated                   | 132,291   |
| Kennedyville WWTP        | 2008 Notes            | 20,000  | Calculated                   | 41,395    |
| Betterton WWTP           | 7/2007-12/2008 DMRS   | 12,000  | 7/2007-12/2008 DMRS          | 12,000    |

1 No Capacity will be left in the Chestertown System, based on 1/14/09 meeting.

Future Flow Capacity can be seen in Appendix 2H.
 Worton uses spray irrigation and 1/2 of the current and future flow will be used in the nutrient calculations.

# **APPENDIX 2-F**

**Tolchester WWTP Concentration Calculations** 

# Appendix 2-F

# **Tolchester Waste Water Treatment Plant**

# Loading for First 5 Months of 2008

**Current Flow** 

55,000

|            | Nitrogen          | Pho        | osphorus            |
|------------|-------------------|------------|---------------------|
| 651        | lb/first 5 months | 136        | lb/first 5 months   |
| 151        | days              | 151        | days/first 5 months |
|            | lbs/day           | 0.9        | lbs/day             |
| 0.00007839 | lbs/gallon        | 0.00001638 | lbs/gallon          |
| 35.6       | mg/gallon         | 7.4        | mg/gallon           |
| 9.4        | mg/liter          | 2.0        | mg/liter            |

# **APPENDIX 2-G**

**Current Loading Calculation** 

#### Appendix 2G - Current Loading

| Plant Name                                | Current Flow | Concentration Nitrogen<br>(mg/liter) | Concentration<br>Phosphorus<br>(mg/liter) | Nitrogen Load<br>(Ib/year) | Phosphorus<br>Load (lb/year) |
|-------------------------------------------|--------------|--------------------------------------|-------------------------------------------|----------------------------|------------------------------|
| Major Plants and Significant Minor Plants |              | ( 3 - )                              | ( 3, /                                    | (,, ,                      |                              |
| Chestertown WWTP                          | 706,000      | 4.00                                 | 0.30                                      | 8,597                      | 645                          |
| Minor Plants                              |              |                                      |                                           |                            |                              |
| Rock Hall WWTP                            | 220,000      | 7.32                                 | 0.20                                      | 4,902                      | 131                          |
| Galena WWTP                               | 50,000       | 11.48                                | 6.77                                      | 1,747                      | 1,030                        |
| Millington WWTP                           | 140,000      | 18.96                                | 2.44                                      | 8,080                      | 1,040                        |
| Worton WWTP                               | 49,500       | 18.00                                | 3.00                                      | 2,712                      | 452                          |
| Tolchester WWTP                           | 94,000       | 9.40                                 | 1.96                                      | 2,690                      | 561                          |
| Kennedyville WWTP                         | 20,000       | 4.34                                 | 1.01                                      | 264                        | 61                           |
| Betterton WWTP                            | 12,000       | 18.00                                | 3.00                                      | 658                        | 110                          |

Current and 2030 Conditions Assume Chestertown is operating at ENR levels.
 Effluent Concentrations were obtained from the most current DMR, with the exception of Tolchester Betterton and Worton
 Tolchester Concentrations are based on loads over a five month period, can be seen in Appendix, 2G
 Worton and Betterton do not have nutrient tests, 18 mg/l of Nitrogen and 3 mg/liter of Phosphorus were assumed based on Trib Strategy guidelines

*Nutrient* load = 
$$Q(MGD) \times C(\frac{mg}{liter}) \times 8.34 \times 365(\frac{days}{year})$$

# **APPENDIX 2-H**

**2030 Flow Predictions** 

## **Appendix 2-H Flow Predictions**

| WWTP Name    | Current Flow (gpd) | Current Service Area (Acres) | Future Area (acres) | Future Flow (gpd) |
|--------------|--------------------|------------------------------|---------------------|-------------------|
| Betterton    | 12,000             | 562                          | 562                 | 12,000            |
| Chestertown  | 706,000            | N/A                          | N/A                 | 1,500,000         |
| Tolchester   | 94,000             | 1,252                        | 1,762               | 132,291           |
| Galena       | 50,000             | 235                          | 235                 | 50,000            |
| Kennedyville | 20,000             | 86                           | 178                 | 41,395            |
| Millington   | 140,000            | N/A                          | N/A                 | 250,000           |
| Rock Hall    | 220,000            | 2,287                        | 2,373               | 228,273           |
| Worton       | 99,000             | N/A                          | N/A                 | 250,000           |

1 Future Flows for Worton, Chestertown and Millington are based on information received from Towns and Kent County

 $Future Flow = \frac{FutureArea}{CurrentArea} \times CurrentFlow$ 

# **APPENDIX 2-I**

2030 Loading Calculation

#### Appendix 2-I 2030 Loadings

| Plant Name                                | Future Flow | Concentration Nitrogen<br>(mg/liter) | Concentration<br>Phosphorus<br>(mg/liter) | Nitrogen Load<br>(Ib/year) | Phosphorus<br>Load (Ib/year) |
|-------------------------------------------|-------------|--------------------------------------|-------------------------------------------|----------------------------|------------------------------|
| Major Plants and Significant Minor Plants |             |                                      |                                           |                            |                              |
| Chestertown WWTP                          | 1,500,000   | 4.00                                 | 0.30                                      | 18,265                     | 1,370                        |
| Minor Plants                              |             |                                      |                                           |                            |                              |
| Rockhall WWTP                             | 228,273     | 7.32                                 | 0.20                                      | 5,087                      | 136                          |
| Galena WWTP                               | 50,000      | 11.48                                | 6.77                                      | 1,747                      | 1,030                        |
| Millington WWTP                           | 250,000     | 18.96                                | 2.44                                      | 14,429                     | 1,857                        |
| Worton WWTP                               | 125,000     | 18.00                                | 3.00                                      | 6,849                      | 1,142                        |
| Tolchester WWTP                           | 132,291     | 9.40                                 | 1.96                                      | 3,785                      | 789                          |
| Kennedyville WWTP                         | 41,395      | 4.34                                 | 1.01                                      | 547                        | 127                          |
| Betterton WWTP                            | 12,000      | 18.00                                | 3.00                                      | 658                        | 110                          |

1 Current and 2030 Conditions Assume Chestertown is operating at ENR levels.

2 Effluent Concentrations were obtained from the most current DMR, with the exception of Tolchester Betterton and Worton

3 Tolchester Concentrations are based on loads over a five month period, can be seen in Appendix, 2G

4 Worton and Betterton do not have nutrient tests, 18 mg/l of Nitrogen and 3 mg/liter of Phosphorus were assumed based on Trib Strategy guidelines

*Nutrient* load =  $Q(MGD) \times C(\frac{mg}{liter}) \times 8.34 \times 365(\frac{days}{year})$ 

# **APPENDIX 2-J**

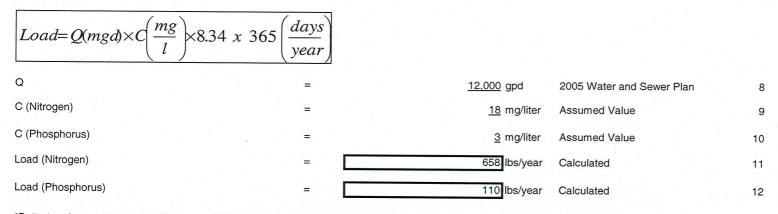
**Town Meeting Worksheets** 

### Appendix 2-J

## WWTP Analysis:

| Plant Name:                          | Betterton              |    |
|--------------------------------------|------------------------|----|
| Classification:                      | Minor WWTP             |    |
|                                      |                        |    |
| 1) Determine Tributary Strategy Poin | t Source Nutrient Caps |    |
|                                      |                        |    |
|                                      |                        |    |
| Q (2020 Predicted Flow) <sup>1</sup> | =                      | 21 |

|                                      |   |                    | Source of Information                                                        | Line # |
|--------------------------------------|---|--------------------|------------------------------------------------------------------------------|--------|
| Q (2020 Predicted Flow) <sup>1</sup> | = | <u>21,000</u> gpd  | Trib Strat Implementation Plan<br>Trib Strat Implementation Plan,            | 1      |
| C (Nitrogen)                         | = | <u>18</u> mg/liter | Point Source Strategy for Minor<br>Plants<br>Trib Strat Implementation Plan, | 2      |
| C (Phosphorus)                       | = | <u>3</u> mg/liter  | Point Source Strategy for Minor<br>Plants                                    | 3      |
| Cap (Nitrogen)                       | = | 1,224 lbs/year     | MDE Worksheet                                                                | 4      |
| Cap (Phosphorus)                     | = | 204 lbs/year       | MDE Worksheet                                                                | 5      |


\* Nutrient Caps are taken directly from MDE worksheet

## 1a) Determine Cap if Minor WWTP is expanded<sup>2</sup>

| If Nitrogen Cap > 6,100 lbs/year, expanded limit |   |                |                                               |   |
|--------------------------------------------------|---|----------------|-----------------------------------------------|---|
| Nitrogen                                         | = | 1,224 lbs/year | Trib Strat Implementation Plan/<br>Calculated | 6 |
| Phosphorus                                       | = | 204 Ibs/year   | Trib Strat Implementation<br>Plan/Calculated  | 7 |

Line #

## 2) Calculate Current Loading Rates



\*Betterton does not measure Nitrogen and Phosphorus concentrations in effluent

<sup>3)</sup> Determine Loads if Chestertown and Rock Hall are operating at ENR Not Applicable to Minor WWTP

### Source of Information

### 4) Calculate 2030 Loading Rates

### 4a) Predict 2030 Flows

| $FutureFlow = \frac{FutureArea}{CurrentArea} \times Cu$ | rrentFlow |            |       |                                                                                                                        |    |
|---------------------------------------------------------|-----------|------------|-------|------------------------------------------------------------------------------------------------------------------------|----|
| Current Flow                                            | =         | 12,000     | gpd   | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                     | 13 |
| Current Sewer Service Area                              | =         | <u>562</u> | acres | boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14 |
| Future Sewer Service Area                               | =         | <u>562</u> | acres | boundary for service area)                                                                                             | 15 |
| Predicted Future Flow (2030)                            | =         | 12,000     | gpd   | Calculated                                                                                                             | 16 |

## 4b) Predict 2030 Loadings

| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 x$ | $365\left(\frac{days}{year}\right)$ | Assume current concen | trations unless plar | nt provides information on proposed to                                                                                         | reatment upgrades. |
|---------------------------------------------------------------|-------------------------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Q                                                             | =                                   |                       | <u>12,000</u> gpd    | Line 16<br>Discharge Monitoring Reports <sup>4</sup> ,<br>Average Concentration of<br>Ammonia Nitrogen from,                   | 17                 |
| C (Nitrogen) <sup>4</sup>                                     | =                                   |                       | <u>18</u> mg/liter   | 1/2006 to 3/2008<br>Discharge Monitroing Reports <sup>4</sup> ,<br>Average Concentration of Total<br>Phosphorus from 5/2006 to | 18                 |
| C (Phosphorus) <sup>4</sup>                                   | =                                   |                       | <u>3</u> mg/liter    | 10/2007                                                                                                                        | 19                 |
| Load (Nitrogen)                                               | =                                   |                       | 658 lbs/year         | Calculated                                                                                                                     | 20                 |
| Load (Phosphorus)                                             | =                                   |                       | 110 lbs/year         | Calculated                                                                                                                     | 21                 |
|                                                               |                                     |                       |                      |                                                                                                                                |                    |

5) Predict 2030 Loadings with Annexations Not Applicable to Betterton Line #

Source of Information

Line #

## 6) Determine Surplus or Deficit

## 6a) Hydraulic Surplus or Deficit

| Hydraulic Surplus or Deficit = Capacity - Flow    |   |                       |                           |    |
|---------------------------------------------------|---|-----------------------|---------------------------|----|
| Design Capacity                                   | = |                       | 2005 Water and Sewer Plan | 22 |
| Current Flow                                      | = | <u>12,000</u> gpd     | Line 8                    | 23 |
| Future Flow                                       | = | 12,000 gpd            | Line 16                   | 24 |
| Current Hydraulic Surplus (+) / Deficit (-)       | = | 188,000               | Calculated                | 25 |
| Future Hydraulic Surplus (+) / Deficit (-)        | = | 188,000               | Calculated                | 26 |
| 6b) Nutrient Surplus or Deficit                   |   |                       |                           |    |
| Surplus/Deficit = Tributary Strategy Cap - Loadin | g |                       |                           |    |
| Nitrogen                                          |   |                       |                           |    |
| Nitrogen Cap                                      | = | <u>1,224</u> lbs/year | Line 6                    | 27 |
| Current Load                                      | = | <u>658</u> lbs/year   | Line 11                   | 28 |
| Predicted Future Load                             | = | <u>658</u> lbs/year   | Line 20                   | 29 |
| Current Nitrogen Surplus (+) / Deficit (-)        | = | 566 lbs/year          | Calculated                | 30 |
| Future Nitrogen Surplus (+) / Deficit (-)         | = | 566 lbs/year          | Calculated                | 31 |
| Phosphorus                                        |   |                       |                           |    |
| Phosphorus Cap                                    | = | 204 lbs/year          | Line 7                    | 32 |
| Current Load                                      |   | 110 lbs/year          | Line 12                   | 33 |
| Predicted Future Load                             | = | 110 lbs/year          | Line 21                   | 34 |
| Current Phosphorus Surplus (+) / Deficit (-)      | = | 94 lbs/year           | Calculated                | 35 |
| Future Phosphorus Surplus (+) / Deficit (-)       | = | 94 lbs/year           | Calculated                | 36 |

7) Convert Surplus / Deficit to EDUs

# 7a) Convert Hydraulic Surplus / Deficit to Equivalent Dwelling Units (EDUs)

| Available $EDOS =$                                                                       | eficit (gpd)<br>gpd<br>EDU        |                                           |                       |          |
|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------|----------|
| Curent Hydraulic Surplus (+) / Deficit (-)<br>Current Available EDUs                     | =                                 | <u>188,000</u> gpd<br>752 EDUs            | Line 25<br>Calculated | 37<br>38 |
| Future Hydraulic Surplus (+) / Deficit (-)<br>Future Available EDUs                      | =                                 | <u>188,000</u> gpd<br>752 EDUs            | Line 26<br>Calculated | 39<br>40 |
| 7b) Convert Nutrient Surplus/Deficit to EDUs                                             |                                   |                                           |                       |          |
| $Available EDUs = \frac{Surplus / Defice}{C \times 8.34 \times 3}$                       | $\frac{it(lb/year)}{\times 1.00}$ | 00.000                                    |                       |          |
| $C \times 8.34 \times 3.34$                                                              | 365×250                           | ,                                         |                       |          |
| <u>Nitrogen (Current)</u><br>Current Nitrogen Surplus (+) / Deficit (-)<br>Concentration | =                                 | <u>566</u> lbs/year<br><u>18</u> mg/liter | Line 30<br>Line 9     | 41<br>43 |
| Current Available EDUs based on Nitrogen                                                 | =                                 | 41 EDUs                                   | Calculated            | 44       |
| <u>Nitrogen (Future)</u><br>Future Nitrogen Surplus (+) / Deficit (-)<br>Concentration   |                                   | 566 lbs/year<br>18 mg/liter               | Line 31<br>Line 18    | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                  | =                                 | 41 EDUs                                   | Calculated            | 48       |
| <u>Phosphorus (Current)</u><br>Phosphorus Cap<br>Concentration                           | =                                 | <u>94</u> lbs/year<br><u>3</u> mg/liter   | Line 35<br>Line 10    | 49<br>51 |
| Current Available EDUs based on Phosphorus                                               | =                                 | 41 EDUs                                   | Calculated            | 52       |
| <u>Phosphorus (Future):</u><br>Expadned Phosphorus Cap<br>Concentration                  | =                                 | <u>94</u> lbs/year<br><u>3</u> mg/liter   | Line 36<br>Line 19    | 53<br>55 |
| Future Available EDUs based on Phosphorus                                                | =                                 | 41 EDUs                                   | Calculated            | 56       |

Betterton, 5 of 6 (3/3/2009)

Line #

|                                                                     |             |                                | Source of Information         | Line #         |
|---------------------------------------------------------------------|-------------|--------------------------------|-------------------------------|----------------|
| 8) Determine the Limiting Factor <sup>5</sup>                       |             |                                |                               |                |
| Current Available EDUs                                              |             |                                |                               |                |
| Hydraulic<br>Nitrogen<br>Phosphorus                                 |             | 752 EDUs<br>41 EDUs<br>41 EDUs | Line 38<br>Line 44<br>Line 52 | 57<br>58<br>59 |
| Limiting Factor⁵                                                    |             | Phosphorus                     |                               | 60             |
| <u>Future Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus | =<br>=<br>= | 752 EDUs<br>41 EDUs<br>41 EDUs | Line 40<br>Line 48<br>Line 56 | 61<br>62<br>63 |
| Limiting Factor <sup>5</sup>                                        | =           | Phosphorus                     |                               | 64             |

#### Notes

1) 2020 Predicted Flow was estimated by MDE in 2000 and may be lower than the actual current flow, Caps will still remain the same.

2) If an expansion of a minor WWTP is planned, the Caps cannot exceed 6,100 lbs/year of Nitrogen and 457 lbs/year of Phosphorus.

3) Current and Future Area were taken from GIS files delineating the current and proposed sewer service area (no proposed service areas for municipal plants included). Does not account for build-out. Other information from operating agency may be used in lieu of simplified area calculation; Refer to Wastewater Capacity Management Plan Guidance for recommendations and worksheet.)

4) Assume current concentrations unless operating agency provides information on proposed treatment upgrades.

5) Limiting Factor is the analysis (hydraulic, nitrogen, phosphorus ) that produces the least # of available EDUs

Appendix 2-J

### WWTP Analysis:

| Plant Name:<br>Classification:                                                                                   | Rock Hall<br>Major WWTP |                    |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| 1) Determine Tributary Strategy Point Source Nutrient<br>* Point Source Nutrient Caps taken directly from MDE wo |                         |                    | Source of Information                                                                                           |
| Q (Design Capacity) <sup>1</sup>                                                                                 | =                       | <u>510,000</u> gpd | Trib Strat Implementation Plan<br>Trib Strat Implementation Plan,                                               |
| C (Nitrogen)                                                                                                     | =                       | <u>4</u> mg/liter  | Point Source Strategy for Minor<br>Plants<br>Trib Strat Implementation Plan,<br>Point Source Strategy for Minor |
| C (Phosphorus)                                                                                                   | =                       | 0.3 mg/liter       | Plants                                                                                                          |
| Cap (Nitrogen)                                                                                                   | =                       | 15,615 lbs/year    | Trib Strat Implementation Plan                                                                                  |
| Cap (Phosphorus)                                                                                                 | =                       | 2,602 lbs/year     | Trib Strat Implementation Plan                                                                                  |

Line #

1

2

3

4

5

# 1a) Determine Cap if Minor WWTP is expanded<sup>2 (Not Applicable)</sup>

| If Nitrogen Cap > 6,100 lbs/year, expanded limit = 6,100 lbs/year | year; if not, it remains the same as | line 4         |                                               |   |
|-------------------------------------------------------------------|--------------------------------------|----------------|-----------------------------------------------|---|
| If Phosphorus Cap > 457 lbs/year, expanded limit = 457 lbs/y      | year; if not, it remains the same as | line 5         |                                               |   |
| Nitrogen                                                          |                                      | 6,152 lbs/year | Trib Strat Implementation Plan/<br>Calculated | 6 |
| Phosphorus                                                        | =                                    | 461 lbs/year   | Trib Strat Implementation<br>Plan/Calculated  | 7 |

Line #

### 2) Calculate Current Loading Rates

| $Load = Q(mgd) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$ |   |                      |                                                                                                                         |    |
|--------------------------------------------------------------------------------------------------------|---|----------------------|-------------------------------------------------------------------------------------------------------------------------|----|
| Q                                                                                                      | E | <u>220,000</u> gpd   | 2005 Water and Sewer Plan<br>Discharge Monitoring Reports,<br>Average Concentration of Toal<br>Nitrogen from, 1/2006 to | 8  |
| C (Nitrogen)                                                                                           | = | <u>7.32</u> mg/liter | 4/2008<br>Discharge Monitroing Reports,<br>Average Concentration of Total<br>Phosphorus from 1/2006 to                  | 9  |
| C (Phosphorus)                                                                                         | = | 0.195 mg/liter       | 4/2008                                                                                                                  | 10 |
| Load (Nitrogen)                                                                                        | = | 4,902 lbs/year       | Calculated                                                                                                              | 11 |
| Load (Phosphorus)                                                                                      | = | 131 lbs/year         | Calculated                                                                                                              | 12 |

3) Determine Loads if Chestertown and Rock Hall are operating at ENR See Alternate Worksheet

Source of Information

Assume current concentrations unless plant provides information on proposed treatment upgrades.

Line 16

4/2008

42008

Calculated

Calculated

Discharge Monitoring Reports<sup>4</sup>, Average Concentration of Total Nitrogen from, 1/2006 to

Discharge Monitroing Reports<sup>4</sup>, Average Concentration of Total Phosphorus from 1/2006 to

228,273 gpd

7.32 mg/liter

0.195 mg/liter

5,087 lbs/year

136 lbs/year

Line #

17

18

19

20

21

### 4) Calculate 2030 Loading Rates

#### 4a) Predict 2030 Flows

| $FutureFlow = \frac{FutureArea}{CurrentArea} \times CurrentFlow$ | ож |                |       |                                                                                                                        |    |
|------------------------------------------------------------------|----|----------------|-------|------------------------------------------------------------------------------------------------------------------------|----|
| Current Flow                                                     | =  | <u>220,000</u> | gpd   | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                     | 13 |
| Current Sewer Service Area                                       | ,  | <u>2,287</u>   | acres | boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14 |
| Future Sewer Service Area                                        | =  | <u>2373</u>    | acres | boundary for service area)                                                                                             | 15 |
| Predicted Future Flow (2030)                                     | =  | 228,273        | gpd   | Calculated                                                                                                             | 16 |

=

=

=

=

=

#### 4b) Predict 2030 Loadings

| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365$ | $\left(\frac{days}{year}\right)$ |
|------------------------------------------------------------------------|----------------------------------|
| Q                                                                      | <u> </u>                         |

C (Nitrogen)<sup>4</sup>

C (Phosphorus)<sup>4</sup>

Load (Nitrogen)

Load (Phosphorus)

| <ol><li>Predict 2020 Loadings with Ann</li></ol> |
|--------------------------------------------------|
|--------------------------------------------------|

Not Applicable to Rock Hall

Source of Information

Line #

# 6) Determine Surplus or Deficit

# 6a) Hydraulic Surplus or Deficit

| Hydraulic Surplus or Deficit = Capacity - Flow                               |             |                                                                          |                                                |                |
|------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|------------------------------------------------|----------------|
| Design Capacity<br>Current Flow<br>Future Flow                               | =<br>=<br>= | <u>510,000</u> gpd<br><u>220,000</u> gpd<br>228,273 gpd                  | 2005 Water and Sewer Plan<br>Line 8<br>Line 16 | 22<br>23<br>24 |
| Current Hydraulic Surplus (+) / Deficit (-)                                  |             | 290,000 gpd                                                              | Calculated                                     | 25             |
| Future Hydraulic Surplus (+) / Deficit (-)                                   | =           | 281,727 gpd                                                              | Calculated                                     | 26             |
| 6b) Nutrient Surplus or Deficit                                              |             |                                                                          |                                                |                |
| Surplus/Deficit = Tributary Strategy Cap - Loading                           |             |                                                                          |                                                |                |
| <u>Nitrogen</u><br>Nitrogen Cap<br>Current Load<br>Predicted Future Load     | =<br>=<br>= | <u>15,615</u> lbs/year<br><u>4,902</u> lbs/year<br><u>5,087</u> lbs/year | Line 6<br>Line 11<br>Line 20                   | 27<br>28<br>29 |
| Current Nitrogen Surplus (+) / Deficit (-)                                   | =           | 10,713 lbs/year                                                          | Calculated                                     | 30             |
| Future Nitrogen Surplus (+) / Deficit (-)                                    | =           | 10,528 lbs/year                                                          | Calculated                                     | 31             |
| <u>Phosphorus</u><br>Phosphorus Cap<br>Current Load<br>Predicted Future Load | =<br>=<br>= | <u>2,602</u> lbs/year<br><u>131</u> lbs/year<br><u>136</u> lbs/year      | Line 7<br>Line 12<br>Line 21                   | 32<br>33<br>34 |
| Current Phosphorus Surplus (+) / Deficit (-)                                 | =           | 2,471 lbs/year                                                           | Calculated                                     | 35             |
| Future Phosphorus Surplus (+) / Deficit (-)                                  | =           | 2,466 lbs/year                                                           | Calculated                                     | 36             |

Line #

# 7) Convert Surplus / Deficit to EDUs

# 7a) Convert Hydraulic Surplus / Deficit to Equivalent Dwelling Units (EDUs)

| Available $EDUs = \frac{Surp}{2}$                                    | $\frac{Dolus / Deficit (gpd)}{250 \frac{gpd}{EDU}}$ |   |                                 |                       |          |
|----------------------------------------------------------------------|-----------------------------------------------------|---|---------------------------------|-----------------------|----------|
| Curent Hydraulic Surplus (+) / Deficit (-)<br>Current Available EDUs |                                                     | = | <u>290,000</u> gpd<br>1160 EDUs | Line 25<br>Calculated | 37<br>38 |
| Future Hydraulic Surplus (+) / Deficit (-)<br>Future Available EDUs  |                                                     | = | <u>281,727</u> gpd<br>1127 EDUs | Line 26<br>Calculated | 39<br>40 |

# 7b) Convert Nutrient Surplus/Deficit to EDUs

| AvailableEDUs=    | Surplus/Deficit(lb/ year              | )          |
|-------------------|---------------------------------------|------------|
| Available LD US = | $C \times 8.34 \times 365 \times 250$ | ×1,000,000 |

| <u>Nitrogen (Current)</u><br>Current Nitrogen Surplus (+) / Deficit (-)<br>Concentration                 | =  | <u>10,713</u> lbs/year<br><u>7.32</u> mg/liter | Line 30<br>Line 9  | 41<br>43 |
|----------------------------------------------------------------------------------------------------------|----|------------------------------------------------|--------------------|----------|
| Current Available EDUs based on Nitrogen                                                                 | =  | 1,923 EDUs                                     | Calculated         | 44       |
| <u>Nitrogen (Future)</u><br>Future Nitrogen Surplus (+) / Deficit (-)<br>Concentration                   | =  | 10,528 lbs/year<br>7.32 mg/liter               | Line 31<br>Line 18 | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                                  | =  | 1,890 EDUs                                     | Calculated         | 48       |
|                                                                                                          |    |                                                |                    |          |
| <u>Phosphorus (Current)</u><br>Future Nitrogen Surplus + Annexation (+) / Deficit (-)<br>Concentration   | =  | <u>2,471</u> lbs/year<br><u>0.195</u> mg/liter | Line 35<br>Line 10 | 49<br>51 |
| Current Available EDUs based on Phosphorus                                                               |    | 16,654 EDUs                                    | Calculated         | 52       |
| <u>Phosphorus (Future):</u><br>Future Phosphorus Surplus + Annexation (+) / Deficit (-)<br>Concentration | =, | <u>2.466</u> lbs/year<br><u>0.195</u> mg/liter | Line 36<br>Line 19 | 53<br>55 |
| Future Available EDUs based on Phosphorus                                                                | =  | 16,621 EDUs                                    | Calculated         | 56       |

Rock Hall (No ENR), 6 of 7 (3/3/2009)

|                                               |     |                    | Source of Information | Line # |
|-----------------------------------------------|-----|--------------------|-----------------------|--------|
|                                               |     |                    |                       |        |
| 8) Determine the Limiting Factor <sup>5</sup> |     |                    |                       |        |
| Current Available EDUs                        |     |                    |                       |        |
| Hydraulic                                     | =   | <u>1160</u> EDUs   | Line 38               | 57     |
| Nitrogen                                      |     | 1,923 EDUs         | Line 44               | 58     |
| Phosphorus                                    |     | 16,654 EDUs        | Line 52               | 59     |
| Filosphords                                   | —   | <u>10,004</u> ED03 | Ellie Sz              | 00     |
|                                               |     |                    |                       | 22     |
| Limiting Factor <sup>5</sup>                  | =   | Nitrogen           |                       | 60     |
|                                               |     |                    |                       |        |
| Future Available EDUs                         |     |                    |                       |        |
| Hydraulic                                     | =   | <u>1127</u> EDUs   | Line 40               | 61     |
| Nitrogen                                      | = * | 1,890 EDUs         | Line 48               | 62     |
| Phosphorus                                    |     | 16,621 EDUs        | Line 56               | 63     |
|                                               |     |                    |                       |        |
| Limiting Factor <sup>5</sup>                  |     | Hydorulio          |                       | 64     |
| Limiting Factor                               |     | Hydarulic          |                       | 64     |
|                                               |     |                    |                       |        |

## Notes

1) Design flow determines plant classification

2) If an expansion of a minor WWTP is planned, the Caps cannot exceed 6,100 lbs/year of Nitrogen and 457 lbs/year of Phosphorus.

3) Current and Future Area were taken from GIS files delineating the current and proposed sewer service area (no proposed service areas for municipal plants included). Does not account for build-out. Other information from operating agency may be used in lieu of simplified area calculation;

Refer to Wastewater Capacity Management Plan Guidance for recommendations and worksheet.)

4) Assume current concentrations unless operating agency provides information on proposed treatment upgrades.

5) Limiting Factor is the analysis (hydraulic, nitrogen, phosphorus ) that produces the least # of available EDUs

| Append | ix | 2-J |
|--------|----|-----|
|--------|----|-----|

## WWTP Analysis:

| Plant Name:     |  |  |
|-----------------|--|--|
| Classification: |  |  |
|                 |  |  |

Chestertown (ENR) Major WWTP

1) Determine Tributary Strategy Point Source Nutrient Caps \* Point Source Nutrient Caps taken directly from MDE worksheet shown in Appendix 2-B

| Q (Design Capacity) <sup>1</sup> | = | <u>1,500,000</u> gpd | Trib Strat Implementation Plan<br>Trib Strat Implementation Plan,            | 1 |
|----------------------------------|---|----------------------|------------------------------------------------------------------------------|---|
| C (Nitrogen)                     | = | 4 mg/liter           | Point Source Strategy for Minor<br>Plants                                    | 2 |
| C (Phosphorus)                   |   | 0.3 mg/liter         | Trib Strat Implementation Plan,<br>Point Source Strategy for Minor<br>Plants | 3 |
| Cap (Nitrogen)                   | = | 18,273 lbs/year      | Trib Strat Implementation Plan                                               | 4 |
| Cap (Phosphorus)                 | = | 1,371 lbs/year       | Trib Strat Implementation Plan                                               | 5 |

Source of Information

Line #

# 1a) Determine Cap if Minor WWTP is expanded<sup>2 (Not Applicable)</sup>

| If Nitrogen Cap > 6,100 lbs/year, expand    | ded limit = 6,100 lbs/year; if not, it remains the same | e as line 4  |                                               |   |
|---------------------------------------------|---------------------------------------------------------|--------------|-----------------------------------------------|---|
| If Phosphorus Cap > 457 lbs/year, expansion | nded limit = 457 lbs/year; if not, it remains the same  | as line 5    |                                               |   |
| Nitrogen                                    | =                                                       | N/A lbs/year | Trib Strat Implementation Plan/<br>Calculated | 6 |
| Phosphorus                                  | =                                                       | N/A lbs/year | Trib Strat Implementation<br>Plan/Calculated  | 7 |

|                                                                                                       |   |                    | Source of Information     | Line # |
|-------------------------------------------------------------------------------------------------------|---|--------------------|---------------------------|--------|
| 2) Calculate Current Loading Rates                                                                    |   |                    |                           |        |
| $Load = Q(mgd) \times C\left(\frac{mg}{l}\right) \times 8.34 \ x \ 365\left(\frac{days}{year}\right)$ |   |                    |                           |        |
| Q                                                                                                     | = | <u>706,000</u> gpd | 2005 Water and Sewer Plan | 8      |
| C (Nitrogen)                                                                                          | = | <u>4</u> mg/liter  | Assumed                   | 9      |
| C (Phosphorus)                                                                                        |   | 0.3 mg/liter       | Assumed                   | 10     |
| Load (Nitrogen)                                                                                       | = | 8,597 lbs/year     | Calculated                | 11     |
| Load (Phosphorus)                                                                                     | = | 645 Ibs/year       | Calculated                | 12     |

3) Determine Loads if Chestertown and Rock Hall are operating at ENR See Alternate Worksheet

# 4) Calculate 2030 Loading Rates

# 4a) Predict 2030 Flows

| $Future Flow = \frac{FutureArea}{CurrentArea} \times CurrentFlow$                                      |                 |                         |                                |                                                                                                                                                    |                   |
|--------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Current Flow                                                                                           |                 | 706,000                 | gpd                            | Line 8<br>Sewer Service GIS File from<br>County (included no municipal                                                                             | 13                |
| Current Sewer Service Area                                                                             | =               | <u>1,948</u>            | acres                          | service areas, used city<br>boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14                |
| Future Sewer Service Area                                                                              | =               | 2091                    | acres                          | boundary for service area)                                                                                                                         | 15                |
| Predicted Future Flow (2030)<br>* This result is superceded by the information received at the 1/14/09 | =<br>9 meeting. | 757,826                 | gpd                            | Calculated                                                                                                                                         | 16                |
| 4b) Predict 2030 Loadings                                                                              |                 |                         |                                |                                                                                                                                                    |                   |
| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$   | Ass             | ume current concentrati | ons unless pla                 | nt provides information on proposed to                                                                                                             | reatment upgrades |
| Q                                                                                                      |                 |                         |                                |                                                                                                                                                    |                   |
|                                                                                                        | =               | 1,500                   | 0 <u>,000</u> gpd              | Line 16                                                                                                                                            | 17                |
|                                                                                                        |                 | <u>1,500</u>            | 0 <u>,000</u> gpd              | Line 16                                                                                                                                            | 17                |
| C (Nitrogen) <sup>4</sup>                                                                              |                 | <u>1,500</u>            | 0,000 gpd<br><u>4</u> mg/liter | Line 16<br>Assumed                                                                                                                                 | 17<br>18          |
| C (Nitrogen) <sup>4</sup>                                                                              |                 | <u>1,500</u>            |                                |                                                                                                                                                    |                   |
|                                                                                                        |                 | <u>1,500</u>            |                                |                                                                                                                                                    |                   |
| C (Nitrogen)⁴<br>C (Phosphorus)⁴<br>∟oad (Nitrogen)                                                    |                 |                         | <u>4</u> mg/liter              | Assumed                                                                                                                                            | 18                |

Line #

## 5) Predict 2030 Loadings with Annexations

### 5a) Predict 2030 Flows with Annexations

| $Future Flow = \frac{FutureArea}{CurrentArea} \times CurrentFlow$                                                  |   |                              |               |                                                                                                                                                    |                     |
|--------------------------------------------------------------------------------------------------------------------|---|------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Current Flow                                                                                                       | = | 706,000                      | gpd           | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                                                 | 13a                 |
| Current Sewer Service Area                                                                                         | = | <u>1.948</u>                 | acres         | Service areas, used city<br>boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14a                 |
| Future Sewer Service Area + Annexations                                                                            | = | <u>3109</u>                  | acres         | boundary for service area)                                                                                                                         | 15a                 |
| Predicted Future Flow (2030) + Annexations<br>* This result superceded by information received at 1/14/09 meeting. | = | 1,126,773                    | gpd           | Calculated                                                                                                                                         | 16a                 |
| 4b) Predict 2030 + Annexation Loadings                                                                             |   |                              |               |                                                                                                                                                    |                     |
| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$               |   | Assume current concentration | ns unless pla | ant provides information on proposed                                                                                                               | treatment upgrades. |
| Q                                                                                                                  | = | <u>1,500,0</u>               | 000 gpd       | Line 16                                                                                                                                            | 17a                 |
|                                                                                                                    |   |                              |               |                                                                                                                                                    |                     |
| C (Nitrogen) <sup>4</sup>                                                                                          | = |                              | 4 mg/liter    | Assumed                                                                                                                                            | 18a                 |

C (Phosphorus)<sup>4</sup>

Load (Nitrogen)

Load (Phosphorus)

 =
 <u>4</u> mg/liter
 Assumed
 18a

 =
 <u>0.3</u> mg/liter
 Assumed
 19a

 =
 18,265 lbs/year
 Calculated
 20a

 =
 1,370 lbs/year
 Calculated
 21a

# 6) Determine Surplus or Deficit

# 6a) Hydraulic Surplus or Deficit

| Hydraulic Surplus or Deficit = Capacity - Flow                                                                     |   |                                                                                                |                                                           |                       |
|--------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|
| Design Capacity<br>Current Flow<br>Future Flow<br>Future + Annexations Flow                                        |   | <u>1,500,000</u> gpd<br><u>706,000</u> gpd<br>1,500,000 gpd<br>1,500,000 gpd                   | 2005 Water and Sewer Plan<br>Line 8<br>Line 16<br>Line 16 | 22<br>23<br>24<br>24a |
| Current Hydraulic Surplus (+) / Deficit (-)                                                                        | = | 794,000 gpd                                                                                    | Calculated                                                | 25                    |
| Future Hydraulic Surplus (+) / Deficit (-)                                                                         | = | 0 gpd                                                                                          | Calculated                                                | 26                    |
| Future + Annexations Surplus (+) / Deficit (-)                                                                     | = | 0 gpd                                                                                          | Calculated                                                | 26a                   |
| 6b) Nutrient Surplus or Deficit                                                                                    |   |                                                                                                |                                                           |                       |
| Surplus/Deficit = Tributary Strategy Cap - Loading                                                                 |   |                                                                                                |                                                           |                       |
| <u>Nitrogen</u><br>Nitrogen Cap                                                                                    |   |                                                                                                |                                                           |                       |
| Current Load                                                                                                       | = | <u>18,273</u> lbs/year<br><u>8,597</u> lbs/year                                                | Line 6<br>Line 11                                         | 27<br>28              |
| Predicted Future Load                                                                                              | = | <u>18,265</u> lbs/year                                                                         | Line 20                                                   | 20                    |
| Predicted Future + Annexations Load                                                                                |   | 18,265 lbs/year                                                                                | Line 20a                                                  | 29a                   |
| Current Nitrogen Surplus (+) / Deficit (-)                                                                         | = | 9,676 lbs/year                                                                                 | Calculated                                                | 30                    |
| Future Nitrogen Surplus (+) / Deficit (-)                                                                          | = | 0 lbs/year                                                                                     | Calculated                                                | 31                    |
| Future + Annexations Surplus (+)/Deficit (-)                                                                       | = | 0 lbs/year                                                                                     | Calculated                                                | 31a                   |
| <u>Phosphorus</u><br>Phosphorus Cap<br>Current Load<br>Predicted Future Load<br>Predicted Future + Annexation Load |   | <u>1,371</u> lbs/year<br><u>645</u> lbs/year<br><u>1,370</u> lbs/year<br><u>1,370</u> lbs/year | Line 7<br>Line 12<br>Line 21<br>Line 22                   | 32<br>33<br>34<br>34a |
| Current Phosphorus Surplus (+) / Deficit (-)                                                                       | = | 726 lbs/year                                                                                   | Calculated                                                | 35                    |
| Future Phosphorus Surplus (+) / Deficit (-)                                                                        | = | 0 lbs/year                                                                                     | Calculated                                                | 36                    |
| Future + Annexations Phosphorus Surplus (+) / Deficit (-)                                                          | = | 0 lbs/yeaer                                                                                    | Calculated                                                | 36a                   |

Chestertown (ENR), 5 of 8 (3/3/2009)

Line #

7) Convert Surplus / Deficit to EDUs

# 7a) Convert Hydraulic Surplus / Deficit to Equivalent Dwelling Units (EDUs)

| Available    | $EDUs = \frac{Surplus / Deficit}{1}$ | (gpd) |
|--------------|--------------------------------------|-------|
| 1 IV allable | $250 \frac{gpd}{2}$                  |       |
|              | EDU                                  |       |

| Curent Hydraulic Surplus (+) / Deficit (-) | = | <u>794,000</u> gpd | Line 25    | 37  |
|--------------------------------------------|---|--------------------|------------|-----|
| Current Available EDUs                     |   | 3176 EDUs          | Calculated | 38  |
| Future Hydraulic Surplus (+) / Deficit (-) | = | 0 gpd              | Line 26    | 39  |
| Future Available EDUs                      |   | EDUs               | Calculated | 40  |
| Future Hydraulic Surplus (+) / Deficit (-) | = | <u></u> gpd        | Line 26a   | 39a |
| Future Available EDUs                      |   | 0 EDUs             | Calculated | 40a |

# 7b) Convert Nutrient Surplus/Deficit to EDUs

| $Available EDUs = \frac{Surplus / Deficit (lb / year)}{2}$ | ~1,000,000  |
|------------------------------------------------------------|-------------|
| $C \times 8.34 \times 365 \times 250$                      | ~ 1,000,000 |

| <u>Nitrogen (Current)</u><br>Current Nitrogen Surplus (+) / Deficit (-)<br>Concentration                         | =                                       | <u>9,676</u> lbs/year<br><u>4</u> mg/liter | Line 30<br>Line 9  | 41<br>43 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------|----------|
| Current Available EDUs based on Nitrogen                                                                         | =                                       | 3,179 EDUs                                 | Calculated         | 44       |
| <u>Nitrogen (Future)</u><br>Future Nitrogen Surplus (+) / Deficit (-)<br>Concentration                           | =                                       | 0 lbs/year<br>4 mg/liter                   | Line 31<br>Line 18 | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                                          | =                                       | 0 EDUs                                     | Calculated         | 48       |
| <u>Nitrogen (Future + Annexation)</u><br>Future Nitrogen Surplus + Annexation (+) / Deficit (-)<br>Concentration | =<br>=                                  | 0 lbs/year<br>4 mg/liter                   | 31a<br>Line 18     | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                                          | = , , , , , , , , , , , , , , , , , , , | 0 EDUs                                     | Calculated         | 48       |
| <u>Phosphorus (Current)</u><br>Future Nitrogen Surplus + Annexation (+) / Deficit (-)<br>Concentration           | =                                       | <u>726</u> lbs/year<br><u>0.3</u> mg/liter | Line 35<br>Line 10 | 49<br>51 |
| Current Available EDUs based on Phosphorus                                                                       |                                         | 3,181 EDUs                                 | Calculated         | 52       |
|                                                                                                                  |                                         |                                            |                    |          |

Chestertown (ENR), 6 of 8 (3/3/2009)

|                                                                                                                                  |        |                                          | Source of Information | Line #   |
|----------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|-----------------------|----------|
| <u>Phosphorus (Future):</u><br>Future Phosphorus Surplus + Annexation (+) / Deficit (-)<br>Concentration                         | =      | <u>0</u> lbs/year<br><u>0.3</u> mg/liter | Line 36<br>Line 19    | 53<br>55 |
| Future Available EDUs based on Phosphorus                                                                                        | =      | 0 EDUs                                   | Calculated            | 56       |
| <u>Phosphorus (Future+Annexation):</u><br>Future + Annexation Phosphorus Surplus + Annexation (+) / Deficit (-)<br>Concentration | =<br>= | <u>0</u> lbs/year<br><u>0.3</u> mg/liter | Line 36<br>Line 19    | 53<br>55 |
| Future+ Annexation Available EDUs based on Phosphorus                                                                            | =      | 0 EDUs                                   | Calculated            | 56       |

Line #

#### 8) Determine the Limiting Factor<sup>5</sup>

| <u>Current Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus            | =<br>=<br>= | <u>3176</u> EDUs<br><u>3,179</u> EDUs<br><u>3,181</u> EDUs | Line 38<br>Line 44<br>Line 52 | 57<br>58<br>59 |
|---------------------------------------------------------------------------------|-------------|------------------------------------------------------------|-------------------------------|----------------|
| Limiting Factor <sup>5</sup>                                                    | =           | Hydraulic                                                  |                               | 60             |
| <u>Future Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus             | =<br>=<br>= | 0 EDUs<br>0 EDUs<br>0 EDUs                                 | Line 40<br>Line 48<br>Line 56 | 61<br>62<br>63 |
| Limiting Factor <sup>5</sup>                                                    | =           | Phosphorus                                                 |                               | 64             |
| <u>Future +Annexation Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus | =<br>=<br>= | <u>0</u> EDUs<br><u>0</u> EDUs<br><u>0</u> EDUs            | Line 40<br>Line 48<br>Line 56 | 61<br>62<br>63 |
| Limiting Factor <sup>5</sup>                                                    | =           | Phosphorus                                                 |                               | 64             |
|                                                                                 |             |                                                            |                               |                |

#### Notes

1) Design Flow determines whether or not a plant is classified as a major or minor plant

2) If an expansion of a minor WWTP is planned, the Caps cannot exceed 6,100 lbs/year of Nitrogen and 457 lbs/year of Phosphorus.

3) Current and Future Area were taken from GIS files delineating the current and proposed sewer service area (no proposed service areas for municipal plants included). Does not account for build-out. Other information from operating agency may be used in lieu of simplified area calculation;

Refer to Wastewater Capacity Management Plan Guidance for recommendations and worksheet.)

4) Assume current concentrations unless operating agency provides information on proposed treatment upgrades.

5) Limiting Factor is the analysis (hydraulic, nitrogen, phosphorus) that produces the least # of available EDUs

Appendix 2-J

# WWTP Analysis:

| Plant Name:<br>Classification:                                                                                                   | Millington<br>Minor WWTP |                    |                                                                                                      |        |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|--------|
| 1) Determine Tributary Strategy Point Source Nutrient Caps<br>* Point Source Nutrient Caps taken directly from MDE worksheet sho | own in Appendix 2-B      |                    | Source of Information                                                                                | Line # |
| Q (2020 Predicted Flow) <sup>1</sup>                                                                                             | =                        | <u>57,000</u> gpd  | Trib Strat Implementation Plan<br>Trib Strat Implementation Plan,<br>Point Source Strategy for Minor | 1      |
| C (Nitrogen)                                                                                                                     | =                        | <u>18</u> mg/liter | Plants<br>Trib Strat Implementation Plan,<br>Point Source Strategy for Minor                         | 2      |
| C (Phosphorus)                                                                                                                   | =                        | <u>3</u> mg/liter  | Plants                                                                                               | 3      |
| Cap (Nitrogen)                                                                                                                   | =                        | 3,344 lbs/year     | Trib Strat Implementation Plan                                                                       | 4      |
| Cap (Phosphorus)                                                                                                                 | =                        | 557 lbs/year       | Trib Strat Implementation Plan                                                                       | 5      |

# 1a) Determine Cap if Minor WWTP is expanded<sup>2</sup>

| If Nitrogen Cap > 6,100 lbs/year, expanded limit = 6,100 lb | os/year; if not, it remains the sam | e as line 4    |                                               |   |
|-------------------------------------------------------------|-------------------------------------|----------------|-----------------------------------------------|---|
| If Phosphorus Cap > 457 lbs/year, expanded limit = 457 lb   | s/year; if not, it remains the same | e as line 5    |                                               |   |
| Nitrogen                                                    | =                                   | 3,344 lbs/year | Trib Strat Implementation Plan/<br>Calculated | 6 |
| Phosphorus                                                  | =                                   | 457 lbs/year   | Trib Strat Implementation<br>Plan/Calculated  | 7 |

# 2) Calculate Current Loading Rates

| $Load = Q(mgd) \times C\left(\frac{mg}{l}\right) \times 8.34 \ x \ 365\left(\frac{days}{year}\right)$ |   |                       |                                                                                                                          |    |
|-------------------------------------------------------------------------------------------------------|---|-----------------------|--------------------------------------------------------------------------------------------------------------------------|----|
| Q                                                                                                     | = | <u>140,000</u> gpd    | 2005 Water and Sewer Plan<br>Discharge Monitoring Reports,<br>Average Concentration of Total<br>Nitrogen from, 1/2006 to | 8  |
| C (Nitrogen)                                                                                          |   | <u>18.96</u> mg/liter | 3/2008<br>Discharge Monitroing Reports,<br>Average Concentration of Total<br>Phosphorus from 1/2006 to                   | 9  |
| C (Phosphorus)                                                                                        | = | 2.44 mg/liter         | 3/2008                                                                                                                   | 10 |
| Load (Nitrogen)                                                                                       | = | 8,080 lbs/year        | Calculated                                                                                                               | 11 |
| Load (Phosphorus)<br>* 140,000 is used based on the information obtained at the 1/14/09 meeting       | = | 1,040 lbs/year        | Calculated                                                                                                               | 12 |

3) Determine Loads if Chestertown and Rock Hall are operating at ENR Not Applicable to Minor WWTP

### 4) Calculate 2030 Loading Rates

#### 4a) Predict 2030 Flows

| $Future Flow = \frac{FutureArea}{CurrentArea} \times CurrentFlow$                                           |   |            |       |                                                                                                                        |    |
|-------------------------------------------------------------------------------------------------------------|---|------------|-------|------------------------------------------------------------------------------------------------------------------------|----|
| Current Flow                                                                                                | = | 55,000     | gpd   | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                     | 13 |
| Current Sewer Service Area                                                                                  | = | <u>301</u> | acres | boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14 |
| Future Sewer Service Area                                                                                   | = | <u>666</u> | acres | boundary for service area)                                                                                             | 15 |
| Predicted Future Flow (2030)<br>* 250,000 is used based on the information obtained at the 1/14/09 meeting. | = | 250,000    | gpd   | Calculated                                                                                                             | 16 |

=

=

=

=

=

4b) Predict 2030 Loadings

$$Load = Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{days}{year}\right)$$

Q

C (Nitrogen)<sup>4</sup>

C (Phosphorus)<sup>4</sup>

Load (Nitrogen)

Load (Phosphorus)

5) Predict 2030 Loadings with Annexations

5a) Predict 2030 Flows with Annexations

 $\frac{FutureArea}{CurrentArea} \times CurrentFlow$ Future Flow=

Assume current concentrations unless plant provides information on proposed treatment upgrades.

| <u>250,000</u> gpd   | Line 16<br>Discharge Monitoring Reports <sup>4</sup> ,<br>Average Concentration of                                          | 17 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|----|
| <u>18.9</u> mg/liter | Ammonia Nitrogen from,<br>1/2006 to 3/2008<br>Discharge Monitroing Reports <sup>4</sup> ,<br>Average Concentration of Total | 18 |
| 2.44 mg/liter        | Phosphorus from 5/2006 to 10/2007                                                                                           | 19 |
| 14,383 lbs/year      | Calculated                                                                                                                  | 20 |
| 1,857 lbs/year       | Calculated                                                                                                                  | 21 |

| $Future Flow = \frac{Current Flow}{Current Area} \times Current Flow$ |   |               |       | Source of Information                                                                                                  | Line # |
|-----------------------------------------------------------------------|---|---------------|-------|------------------------------------------------------------------------------------------------------------------------|--------|
| Current Flow                                                          | = | <u>55,000</u> | gpd   | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                     | 13a    |
| Current Sewer Service Area                                            | = | <u>301</u>    | acres | boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14a    |
| Future Sewer Service Area + Annexations                               | = | <u>936</u>    | acres | boundary for service area)                                                                                             | 15a    |
| Predicted Future Flow (2030) + Annexations                            | = | 250,000       | gpd   | Calculated                                                                                                             | 16a    |

4b) Predict 2030 + Annexation Loadings

| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365$ | $\left(\frac{days}{year}\right)$ |
|------------------------------------------------------------------------|----------------------------------|
| Q                                                                      |                                  |

C (Nitrogen)<sup>4</sup>

C (Phosphorus)<sup>4</sup>

Load (Nitrogen)

Load (Phosphorus)

Assume current concentrations unless plant provides information on proposed treatment upgrades.

| =  | <u>250,000</u> gpd   | Line 16<br>Discharge Monitoring Reports <sup>4</sup> ,<br>Average Concentration of<br>Ammonia Nitrogen from,                   | 17a |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| =  | <u>18.9</u> mg/liter | 1/2006 to 3/2008<br>Discharge Monitroing Reports <sup>4</sup> ,<br>Average Concentration of Total<br>Phosphorus from 5/2006 to | 18a |
| .= | 2.44 mg/liter        | 10/2007                                                                                                                        | 19a |
| =  | 14,383 lbs/year      | Calculated                                                                                                                     | 20a |
| =  | 1,857 lbs/year       | Calculated                                                                                                                     | 21a |

Millington, 4 of 8 (3/4/2009)

# 6) Determine Surplus or Deficit

# 6a) Hydraulic Surplus or Deficit

| Hydraulic Surplus or Deficit = Capacity - Flow              |     |                                                |                           |           |
|-------------------------------------------------------------|-----|------------------------------------------------|---------------------------|-----------|
| Design Capacity                                             | =   | 145,000 gpd                                    | 2005 Water and Sewer Plan | 22        |
| Current Flow                                                | =   | <u>140,000</u> gpd                             | Line 8                    | 23        |
| Future Flow                                                 | =   | 250,000 gpd                                    | Line 16                   | 24        |
| Future + Annexations Flow                                   | =   | 250,000 gpd                                    | Line 16                   | 24a       |
| Current Hydraulic Surplus (+) / Deficit (-)                 | = [ | 5,000 gpd                                      | Calculated                | 25        |
| Future Hydraulic Surplus (+) / Deficit (-)                  | = [ | -105,000 gpd                                   | Calculated                | 26        |
| Future + Annexations Surplus (+) / Deficit (-)              | = [ | -105,000 gpd                                   | Calculated                | 26a       |
| 6b) Nutrient Surplus or Deficit                             |     |                                                |                           |           |
| Surplus/Deficit = Tributary Strategy Cap - Loading          |     |                                                |                           |           |
| Nitrogen                                                    |     |                                                |                           |           |
| Nitrogen Cap                                                | =   | 3,344 lbs/year                                 | Line 6                    | 27        |
| Current Load                                                | _   | 8,080 lbs/year                                 | Line 11                   | 28        |
| Predicted Future Load                                       | _   | 14,383 lbs/year                                | Line 20                   | 29        |
| Predicted Future + Annexations Load                         | =   | <u>14,383</u> lbs/year                         | Line 20a                  | 29a       |
| Current Nitrogen Surplus (+) / Deficit (-)                  | = [ | -4,736 lbs/year                                | Calculated                | 30        |
| Future Nitrogen Surplus (+) / Deficit (-)                   | = [ | -11,039 lbs/year                               | Calculated                | 31        |
| Future + Annexations Surplus (+)/Deficit (-)                | = [ | -11,039 lbs/year                               | Calculated                | 31a       |
| <u>Phosphorus</u><br>Phosphorus Cap                         | _   | 557 lbs/year                                   | Line 5                    | 32        |
| Expanded Phosphorus Cap                                     |     | <u>457</u> lbs/year                            | Line 7                    | 32a       |
| Current Load                                                |     | 1,040 lbs/year                                 | Line 12                   | 33        |
| Predicted Future Load                                       |     |                                                | Line 12                   | 34        |
| Predicted Future Load<br>Predicted Future + Annexation Load | =   | <u>1,857</u> lbs/year<br><u>1,857</u> lbs/year | Line 22                   | 34<br>34a |
| Predicted Future + Annexation Load                          | =   | <u>1,857</u> IDS/year                          | Line 22                   | 34a       |
| Current Phosphorus Surplus (+) / Deficit (-)                | = [ | -483 lbs/year                                  | Calculated                | 35        |
| Future Phosphorus Surplus (+) / Deficit (-)                 | = [ | -1,400 lbs/year                                | Calculated                | 36        |
| Future + Annexations Phosphorus Surplus (+) / Deficit (-)   | = [ | -1,400 lbs/yeaer                               | Calculated                | 36a       |
|                                                             |     |                                                |                           |           |

Line #

7) Convert Surplus / Deficit to EDUs

### 7a) Convert Hydraulic Surplus / Deficit to Equivalent Dwelling Units (EDUs)

| Available $EDUs = \frac{Surplus / Deficit (gpd)}{250 \frac{gpd}{EDU}}$ |     |                     |            |     |
|------------------------------------------------------------------------|-----|---------------------|------------|-----|
| Curent Hydraulic Surplus (+) / Deficit (-)                             | =   | <u>5,000</u> gpd    | Line 25    | 37  |
| Current Available EDUs                                                 | = . | 20 EDUs             | Calculated | 38  |
| Future Hydraulic Surplus (+) / Deficit (-)                             | =   | <u>-105,000</u> gpd | Line 26    | 39  |
| Future Available EDUs                                                  | = - | -420 EDUs           | Calculated | 40  |
| Future Hydraulic Surplus (+) / Deficit (-)                             | =   | <u>-105,000</u> gpd | Line 26a   | 39a |
| Future Available EDUs                                                  | =   | -420 EDUs           | Calculated | 40a |
| 7b) Convert Nutrient Surplus/Deficit to EDUs                           |     |                     |            |     |
|                                                                        |     |                     |            |     |

 $Available EDUs = \frac{Surplus / Deficit (lb / year)}{C \times 8.34 \times 365 \times 250} \times 1,000,000$ 

| <u>Nitrogen (Current)</u><br>Current Nitrogen Surplus (+) / Deficit (-)<br>Concentration                         | =<br>= |           | Line 30<br>Line 9  | 41<br>43 |
|------------------------------------------------------------------------------------------------------------------|--------|-----------|--------------------|----------|
| Current Available EDUs based on Nitrogen                                                                         | =      | -328 EDUs | Calculated         | 44       |
| <u>Nitrogen (Future)</u><br>Future Nitrogen Surplus (+) / Deficit (-)<br>Concentration                           | =      |           | Line 31<br>Line 18 | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                                          | =      | -768 EDUs | Calculated         | 48       |
| <u>Nitrogen (Future + Annexation)</u><br>Future Nitrogen Surplus + Annexation (+) / Deficit (-)<br>Concentration | =      |           | 31a<br>Line 18     | 45<br>47 |
| Future Available EDUs based on Nitrogen                                                                          | =      | -768 EDUs | Calculated         | 48       |
| <u>Phosphorus (Current)</u><br>Future Nitrogen Surplus + Annexation (+) / Deficit (-)<br>Concentration           | =      |           | Line 35<br>Line 10 | 49<br>51 |
| Current Available EDUs based on Phosphorus                                                                       | =      | -260 EDUs | Calculated         | 52       |
|                                                                                                                  |        |           |                    |          |

Millington, 6 of 8 (3/4/2009)

Source of Information Line # <u>Phosphorus (Future):</u> Future Phosphorus Surplus + Annexation (+) / Deficit (-) -1,400 lbs/year Line 36 53 = Concentration 2.44 mg/liter Line 19 55 = -754 EUDs Future Available EDUs based on Phosphorus Calculated 56 = Phosphorus (Future+Annexation): Future + Annexation Phosphorus Surplus + Annexation (+) / Deficit (-) -1,400 lbs/year Line 36 53 = Concentration 2.44 mg/liter Line 19 55 = -754 EUDs 56 Future+ Annexation Available EDUs based on Phosphorus Calculated =

Line #

#### 8) Determine the Limiting Factor<sup>5</sup>

| <u>Current Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus                                | =<br>=<br>= | <u>20</u> EDUs<br><u>-328</u> EDUs<br><u>-260</u> EDUs               | Line 38<br>Line 44<br>Line 52 | 57<br>58<br>59       |
|-----------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|-------------------------------|----------------------|
| Limiting Factor <sup>5</sup>                                                                        | =           | Nitrogen                                                             |                               | 60                   |
| <u>Future Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus<br>Limiting Factor <sup>5</sup> | =<br>=<br>= | <u>-420</u> EDUs<br><u>-768</u> EDUs<br><u>-754</u> EDUs<br>Nitrogen | Line 40<br>Line 48<br>Line 56 | 61<br>62<br>63<br>64 |
|                                                                                                     |             | Nitrogen                                                             |                               | 01                   |
| <u>Future +Annexation Available EDUs</u><br>Hydraulic<br>Nitrogen<br>Phosphorus                     | =<br>=<br>= | <u>-420</u> EDUs<br><u>-768</u> EDUs<br><u>-754</u> EDUs             | Line 40<br>Line 48<br>Line 56 | 61<br>62<br>63       |
| Limiting Factor <sup>5</sup>                                                                        | =           | Nitrogen                                                             |                               | 64                   |

#### Notes

1) 2020 Predicted Flow was estimated by MDE in 2000 and may be lower than the actual current flow, Caps will still remain the same.

2) If an expansion of a minor WWTP is planned, the Caps cannot exceed 6,100 lbs/year of Nitrogen and 457 lbs/year of Phosphorus.

Current and Future Area were taken from GIS files delineating the current and proposed sewer service area (no proposed service areas for municipal plants included).
 Does not account for build-out. Other information from operating agency may be used in lieu of simplified area calculation;

Refer to Wastewater Capacity Management Plan Guidance for recommendations and worksheet.)

4) Assume current concentrations unless operating agency provides information on proposed treatment upgrades.

5) Limiting Factor is the analysis (hydraulic, nitrogen, phosphorus ) that produces the least # of available EDUs

# Appendix 2-J

# WWTP Analysis:

| Plant Name:     |  |
|-----------------|--|
| Classification: |  |

Galena Minor WWTP

1) Determine Tributary Strategy Point Source Nutrient Caps

|                                      |   |                    | Source of Information                                                        | Line # |
|--------------------------------------|---|--------------------|------------------------------------------------------------------------------|--------|
| Q (2020 Predicted Flow) <sup>1</sup> | = | <u>28,000</u> gpd  | Trib Strat Implementation Plan<br>Trib Strat Implementation Plan,            | 1      |
| C (Nitrogen)                         | = | <u>18</u> mg/liter | Point Source Strategy for Minor<br>Plants<br>Trib Strat Implementation Plan, | 2      |
| C (Phosphorus)                       |   | <u>3</u> mg/liter  | Point Source Strategy for Minor<br>Plants                                    | 3      |
| Cap (Nitrogen)                       | = | 1,538 lbs/year     | MDE Worksheet                                                                | 4      |
| Cap (Phosphorus)                     | = | 256 lbs/year       | MDE Worksheet                                                                | 5      |

# 1a) Determine Cap if Minor WWTP is expanded<sup>2</sup>

| If Nitrogen Cap > 6,100 lbs/year, | expanded limit = 6,100 lbs/year; if not, it rema   | ins the same as line 4 |                                               |   |
|-----------------------------------|----------------------------------------------------|------------------------|-----------------------------------------------|---|
| If Phosphorus Cap > 457 lbs/year  | r, expanded limit = 457 lbs/year; if not, it remai | ins the same as line 5 |                                               |   |
| Nitrogen                          | =                                                  | 1,538 lbs/year         | Trib Strat Implementation Plan/<br>Calculated | 6 |
| Phosphorus                        | =                                                  | 256 lbs/year           | Trib Strat Implementation<br>Plan/Calculated  | 7 |

# 2) Calculate Current Loading Rates

| $Load = Q(mgd) \times C\left(\frac{mg}{l}\right) \times 8.$ | $34 \ x \ 365\left(\frac{days}{year}\right)$ |                       |                                                                                                                  |    |
|-------------------------------------------------------------|----------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|----|
| Q                                                           |                                              | <u>50,000</u> gpd     | 2005 Water and Sewer Plan<br>Discharge Monitoring Reports,<br>Average Concentration of<br>Ammonia Nitrogen from, | 8  |
| C (Nitrogen)                                                |                                              | <u>11.48</u> mg/liter | 1/2006 to 3/2008<br>Discharge Monitroing Reports,<br>Average Concentration of Total<br>Phosphorus from 5/2006 to | 9  |
| C (Phosphorus)                                              | =                                            | 6.77 mg/liter         | 10/2007                                                                                                          | 10 |
| Load (Nitrogen)                                             | =                                            | 1,747 lbs/year        | Calculated                                                                                                       | 11 |
| Load (Phosphorus)                                           | =                                            | 1,030 lbs/year        | Calculated                                                                                                       | 12 |

3) Determine Loads if Chestertown and Rock Hall are operating at ENR Not Applicable to Minor WWTP

# 4) Calculate 2030 Loading Rates

# 4a) Predict 2030 Flows

| $Future Flow = \frac{FutureArea}{CurrentArea} \times Cur$ | rentFlow |            |       |                                                                                                                                                    |    |
|-----------------------------------------------------------|----------|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Current Flow                                              | =        | 50,000     | gpd   | Line 8<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city                                                 | 13 |
| Current Sewer Service Area                                | ,        | <u>235</u> | acres | Service areas, used city<br>boundary for service area)<br>Sewer Service GIS File from<br>County (included no municipal<br>service areas, used city | 14 |
| Future Sewer Service Area                                 | =        | <u>235</u> | acres | boundary for service area)                                                                                                                         | 15 |
| Predicted Future Flow (2030)                              | = [      | 50,000     | gpd   | Calculated                                                                                                                                         | 16 |

# 4b) Predict 2030 Loadings

| $Load=Q(MGD) \times C\left(\frac{mg}{l}\right) \times 8.34 \times 365\left(\frac{dg}{d}\right)$ | lays<br>vear) | Assume current concentrations unless | plant provides information on proposed tr                                                                                        | eatment upgrades. |
|-------------------------------------------------------------------------------------------------|---------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Q                                                                                               | =             | <u>50,000</u> gpd                    | Line 16<br>Discharge Monitoring Reports <sup>4</sup> ,<br>Average Concentration of<br>Ammonia Nitrogen from,                     | 17                |
| C (Nitrogen) <sup>4</sup>                                                                       | =             | <u>11.48</u> mg/lite                 | r 1/2006 to 3/2008<br>Discharge Monitroing Reports <sup>4</sup> ,<br>Average Concentration of Total<br>Phosphorus from 5/2006 to | 18                |
| C (Phosphorus) <sup>4</sup>                                                                     | =             | <u>6.77</u> mg/lite                  | r 10/2007                                                                                                                        | 19                |
| Load (Nitrogen)                                                                                 | =             | 1,747 lbs/ye                         | ar Calculated                                                                                                                    | 20                |
| Load (Phosphorus)                                                                               | =             | 1,030 lbs/ye                         | ar Calculated                                                                                                                    | 21                |

5) Predict 2030 Loadings with Annexations Not Applicable to Galena

# 6) Determine Surplus or Deficit

# 6a) Hydraulic Surplus or Deficit

| Hydraulic Surplus or Deficit = Capacity - Flow    |    |                       |                           |    |
|---------------------------------------------------|----|-----------------------|---------------------------|----|
| Design Capacity                                   | =  |                       | 2005 Water and Sewer Plan | 22 |
| Current Flow                                      | =  | <u>50,000</u> gpd     | Line 8                    | 23 |
| Future Flow                                       | =  | 50,000 gpd            | Line 16                   | 24 |
| Current Hydraulic Surplus (+) / Deficit (-)       | =  | 30,000                | Calculated                | 25 |
| Future Hydraulic Surplus (+) / Deficit (-)        | =  | 30,000                | Calculated                | 26 |
| 6b) Nutrient Surplus or Deficit                   |    |                       |                           |    |
| Surplus/Deficit = Tributary Strategy Cap - Loadir | ng |                       |                           |    |
| Nitrogen                                          |    |                       |                           |    |
| Nitrogen Cap                                      | =  | <u>1,538</u> lbs/year | Line 6                    | 27 |
| Current Load                                      | =  | <u>1,747</u> lbs/year | Line 11                   | 28 |
| Predicted Future Load                             | =  | <u>1,747</u> lbs/year | Line 20                   | 29 |
| Current Nitrogen Surplus (+) / Deficit (-)        | =  | -209 lbs/year         | Calculated                | 30 |
| Future Nitrogen Surplus (+) / Deficit (-)         | =  | -209 lbs/year         | Calculated                | 31 |
| Phosphorus                                        |    |                       |                           |    |
| Phosphorus Cap                                    |    | <u>256</u> lbs/year   | Line 7                    | 32 |
| Current Load                                      | =  | <u>1,030</u> lbs/year | Line 12                   | 33 |
| Predicted Future Load                             | =  | <u>1,030</u> lbs/year | Line 21                   | 34 |
| Current Phosphorus Surplus (+) / Deficit (-)      | =  | -775 lbs/year         | Calculated                | 35 |
| Future Phosphorus Surplus (+) / Deficit (-)       | =  | -775 lbs/year         | Calculated                | 36 |

# 7) Convert Surplus / Deficit to EDUs

# 7a) Convert Hydraulic Surplus / Deficit to Equivalent Dwelling Units (EDUs)

| Available $EDUs = \frac{Surplus / D}{Surplus - D}$                        | eficit (gpd)                      |                                               |                       |          |
|---------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------|----------|
| 250-                                                                      | gpd                               |                                               |                       |          |
| 230-                                                                      | EDU                               |                                               |                       |          |
| Curent Hydraulic Surplus (+) / Deficit (-)                                | =                                 | <u>30,000</u> gpd                             | Line 25               | 37       |
| Current Available EDUs                                                    | =                                 | 120 EDUs                                      | Calculated            | 38       |
| Future Hydraulic Surplus (+) / Deficit (-)<br>Future Available EDUs       | =                                 | <u>30,000</u> gpd<br>120 EDUs                 | Line 26<br>Calculated | 39<br>40 |
|                                                                           | = L                               | 120 EDOS                                      | Calculated            | 40       |
| 7b) Convert Nutrient Surplus/Deficit to EDUs                              |                                   |                                               |                       |          |
| Surplus Defic                                                             | cit(lb/ vear )                    |                                               |                       |          |
| Available EDUs = $\frac{Surplus / Defice}{C \times 8.34 \times 10^{-10}}$ | $\frac{1}{265\times 250}$ ×1,000, | ,000                                          |                       |          |
| L × 8.34×                                                                 | 365 × 250                         |                                               |                       |          |
| <u>Nitrogen (Current)</u>                                                 |                                   |                                               |                       |          |
| Current Nitrogen Surplus (+) / Deficit (-)<br>Concentration               |                                   | <u>-209</u> lbs/year<br><u>11.48</u> mg/liter | Line 30<br>Line 9     | 41<br>43 |
|                                                                           |                                   |                                               |                       | -10      |
| Current Available EDUs based on Nitrogen                                  | =                                 | -24 EUDs                                      | Calculated            | 44       |
| litrogen (Future)                                                         |                                   |                                               |                       |          |
| Future Nitrogen Surplus (+) / Deficit (-)<br>Concentration                |                                   | -209 lbs/year<br>11.48 mg/liter               | Line 31<br>Line 18    | 45<br>47 |
|                                                                           |                                   | 5                                             |                       |          |
| uture Available EDUs based on Nitrogen                                    | =                                 | -24 EUDs                                      | Calculated            | 48       |
| Phosphorus (Current)                                                      |                                   |                                               | 1 2 4 9 5             | 10       |
| Phosphorus Cap<br>Concentration                                           |                                   | <u>-775</u> lbs/year<br><u>6.77</u> mg/liter  | Line 35<br>Line 10    | 49<br>51 |
|                                                                           |                                   |                                               |                       | 50       |
| Current Available EDUs based on Phosphorus                                | =                                 | -150 EUDs                                     | Calculated            | 52       |
| Phosphorus (Future):                                                      |                                   | 775 160/1007                                  | Line 20               | 50       |
| Expadned Phosphorus Cap<br>Concentration                                  | =                                 | <u>-775</u> lbs/year<br><u>6.77</u> mg/liter  | Line 36<br>Line 19    | 53<br>55 |
| uture Available EDI le based en Pheesberge                                | _                                 |                                               | Coloulated            | 50       |
| uture Available EDUs based on Phosphorus                                  |                                   | -150 EUDs                                     | Calculated            | 56       |

|                                               |     |                  | Source of Information | Line # |
|-----------------------------------------------|-----|------------------|-----------------------|--------|
| 8) Determine the Limiting Factor <sup>5</sup> |     |                  |                       |        |
| Current Available EDUs                        |     |                  |                       |        |
| Hydraulic                                     | =   | <u>120</u> EDUs  | Line 38               | 57     |
| Nitrogen                                      | =   | -24 EDUs         | Line 44               | 58     |
| Phosphorus                                    | =   | <u>-150</u> EDUs | Line 52               | 59     |
| Limiting Factor <sup>5</sup>                  | = [ | Phosphorus       |                       | 60     |
| Future Available EDUs                         |     |                  |                       |        |
| Hydraulic                                     | =   | 120 EDUs         | Line 40               | 61     |
| Nitrogen                                      | =   | -24 EDUs         | Line 48               | 62     |
| Phosphorus                                    | =   | -150 EDUs        | Line 56               | 63     |
|                                               |     | <u>_100</u> 2500 | Line oo               | 00     |
| Limiting Factor <sup>5</sup>                  | = [ | Phosphorus       |                       | 64     |

#### Notes

1) 2020 Predicted Flow was estimated by MDE in 2000 and may be lower than the actual current flow, Caps will still remain the same.

2) If an expansion of a minor WWTP is planned, the Caps cannot exceed 6,100 lbs/year of Nitrogen and 457 lbs/year of Phosphorus.

3) Current and Future Area were taken from GIS files delineating the current and proposed sewer service area (no proposed service areas for municipal plants included). Does not account for build-out. Other information from operating agency may be used in lieu of simplified area calculation;

Refer to Wastewater Capacity Management Plan Guidance for recommendations and worksheet.)

4) Assume current concentrations unless operating agency provides information on proposed treatment upgrades.

5) Limiting Factor is the analysis (hydraulic, nitrogen, phosphorus ) that produces the least # of available EDUs