PWSID: 014-0004

Town of Galena 2022 Drinking Water Quality Report

Important Information About Your Drinking Water

We're pleased to present to you the Annual Water Quality Report for 2022. This report is designed to inform you about the water quality and services we deliver to you every day. Kent County Department of Public Works Division of Water and Wastewater operates the water treatment facility and prepared this report on behalf of the Town of Galena.

The Environmental Protection Agency (EPA) regulates Public Water Systems and the contaminants found in water through the implementation of the Safe Drinking Water Act (SDWA). The SDWA sets regulations and guidelines for how public water systems operate and identifies several hundred drinking water contaminants, establishes monitoring frequencies and limitations. The Maryland Department of the Environment (MDE) is responsible for the enforcement of the SDWA and routinely completes Sanitary Surveys as part of its ongoing inspection and monitoring program. Kent County provides safe dependable operations of the water system and is dedicated to consistently providing high-quality drinking water that meets or exceeds the SDWA standards.

If you have any questions about this report or have questions concerning your water utility, please contact Kent County Department of Public Works Division of Water and Wastewater Services, at 410-778-3287.

For more information

For the opportunity to ask more questions or participate in decisions that may affect your drinking water quality the Town Council generally meets on the first Monday of each month at 7:00 P.M. at the Town Hall. Or contact Caitlyn Smith, Town Clerk/ Treasurer, 410-648-5151 ext 303 The Town of Galena water works consists of two drilled wells in the Patapsco formation. Before the water enters the distribution network, chlorine is added to protect against microbial contaminants. The water is then pumped into two elevated storage towers. The Maryland Department of the Environment has performed an assessment of the source water. A copy of the results is available. Call Kent County Department of Public Works Division of Water and Wastewater Services, at 410-778-3287.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunecompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the **Safe Drinking Water Hotline (1-800-426-4791)**.

Town of Galena Treated Water Quality Report 2022

Definitions:

- □ **Maximum Contaminant Level Goal (MCLG)** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- □ **Maximum Contaminant Level (MCL)** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- □ Action Level The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- □ **Treatment Technique (TT)** A required process intended to reduce the level of a contaminant in drinking water.
- □ **Turbidity** Relates to a condition where suspended particles are present in the water. Turbidity measurements are a way to describe the level of "cloudiness" of the water.
- **pCi/l** Picocuries per liter. A measure of radiation.
- **ppb** parts per billion or micrograms per liter.
- **ppm** parts per million or milligrams per liter.

Special points of interest:

The water at the Town of Galena is tested for over 120 different compounds. The Town of Galena's Drinking Water met all of the State and Federal requirements.

Drinking Water, including bottled water, may reasonably be expected to contain at least small amounts of some compounds. The presence of these compounds does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's

(EPA's) Safe Drinking Water Act Hotline (1-800-426-4791)

Important information Regarding Gross Alpha Emitters:

Alpha emitters are naturally occurring radiations in soil, air, and water. These emitters generally occur when certain elements decay or break down in the environment. The emitters enter drinking water through various methods including the erosion of natural deposits. There are no immediate health risks from consuming water that contains gross alpha, however some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer. Currently, the highest level of gross alpha detected is 0.0 pCi/L which is below the 15 pCi/L MCL.

Town of Galena Treated Water Quality Report 2022

	Highest Level	Highest Level	Ideal Goal				
Contaminant	Allowed (EPA's MCL)	Detected	(EPA's MCLG)				
Regulated at the Treatment Plant							
Fluoride (01/09/2020)	4.0 ppm	0.3 ppm	4.0 ppm				
Typical Source of Contamination: Water additive which promotes strong to	eeth	(Range: 0.3 - 0.3 ppr	m)				
Gross Beta - (2020 Testing)	50 pCi/l*	5.7 pCi/l**	0.0 pCi/l				
Typical Source of Contamination: Erosion of natural deposits		diam'r II					
*EPA considers 50 pCi/L to be the level of concern for beta particles		and the second	and the second s				
** Because the beta particle results were below 50 pCi/l, no testing for individual beta particle constituents was required							
Combined Radium 226/228 – (02/25/2020)	5 pCi/l	1.3 pCi/l	0.0 pCi/l				
Typical Source of Contamination: Erosion of natural deposits			Section 2.				
Regulated in the Distribution System	Action Level	Highest Level Detected	Ideal Goal				
Total Trihalomethanes (TTHM) (2022 Testing)	80 ppb	2 ppb	n/a				
Source: By-product of drinking water chlorination							
Chlorine (2022 Testing)	4 ppm	0.7 ppm	4 ppm				
Typical Source of Contamination: Water additive to control microbes.		(Range: 0.4 – 0.7 pp	m)				

The table above lists all the drinking water contaminants that were detected during the 2022 calendar year.

The presence of these compounds in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in the table is from testing done January 1 – December 31, 2022. The State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year.

Lead Prevention

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Town of Galena in conjunction with the Kent County Department of Public Works Division of Water and Wastewater Services is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry, or doing a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact the Town of Galena. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Beginning in 2020, the Maryland Department of the Environment (MDE) initiated a PFAS monitoring program. Our water system was not tested for PFAS in 2022. In March 2023, EPA announced proposed Maximum Contaminant Levels (MCLs) MCLs of 4 ppt for PFOA and 4 ppt for PFOS, and a Group Hazard Index for four additional PFAS compounds. Future regulations would require additional monitoring as well as certain actions for systems above the MCLs. EPA will publish the final MCLs and requirements by the end of 2023 or the beginning of 2024. Additional information about PFAS can be found on the MDE website: mde.maryland.gov/PublicHealth/Pages/PFAS-Landing-Page.aspx

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Lead and Copper	Likely Source of Contamination
Copper	06/10/2020	1.3	1.3	0.1	0	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the number of certain compounds in water provided by public water systems. We treat our water according to EPA's regulations. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same.

Contaminants That May Be Present in Source Water:

Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Pesticides and Herbicides may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Inorganic Contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive Contaminants can be naturally occurring or be the result of oil and gas production and mining activities.

Water Security is Everyone's Responsibility

Water system security continues to be an enormously important issue. If you notice suspicious activities in or around local water utilities, such as persons cutting or climbing facility fencing, loitering, tampering with equipment or other similar activities, please contact your local law enforcement agency immediately by dialing 911.

PFAS – short for per- and polyfluoroalkyl substances

Refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and firefighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater, and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain.

MARYLAND DEPARTMENT OF THE ENVIRONMENT PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) ANALYTICAL RESULTS TOWN OF GALENA MD0140004

Analyte	WTP 1- WELL 3	WTP 2- WELL 4		
11Cl- PF3OUdS	ND	ND		
ADONA	ND	ND		
9CI-PF3ONS	ND	ND		
HFPO-DA	ND	ND		
N-EIFOSAA	ND	ND		
N-MeFOSAA	ND	ND		
PFBS	ND	ND		
PFDA	ND	ND		
PFDoA	ND	ND		
PFHpA	ND	ND		
PFHxS	ND	ND		
PFHxA	ND	ND		
PFNA	ND	ND		
PFOS	ND	ND		
PFOA	ND	ND		
PFTA	ND	ND		
PFTrDA	ND	ND		
PFUnDA	ND	ND		
Total PFOA/PFOS	ND	ND		

Point of entry samples were collected from the treatment plants 1 and 2 on October 27, 2021. All results are in parts per trillion (ppt).